Massively-Parallel Lossless Data Decompression

Evangelia Sitaridi*, Rene Mueller!, Tim Kaldewey?, Guy Lohman’ and Kenneth A. Ross*
*Columbia University: {eva, kar} @cs.columbia.edu
fIBM Almaden Research: {muellerr, lohmang } @us.ibm.com
'IBM Watson: tkaldew @us.ibm.com

Abstract—Today’s exponentially increasing data volumes and
the high cost of storage make compression essential for the Big
Data industry. Although research has concentrated on efficient
compression, fast decompression is critical for analytics queries
that repeatedly read compressed data. While decompression can
be parallelized somewhat by assigning each data block to a
different process, break-through speed-ups require exploiting the
massive parallelism of modern multi-core processors and GPUs
for data decompression within a block. We propose two new
techniques to increase the degree of parallelism during decom-
pression. The first technique exploits the massive parallelism
of GPU and SIMD architectures. The second sacrifices some
compression efficiency to eliminate data dependencies that limit
parallelism during decompression. We evaluate these techniques
on the decompressor of the DEFLATE scheme, called Inflate,
which is based on LZ77 compression and Huffman encoding.
We achieve a 2x speed-up in a head-to-head comparison with
several multi-core CPU-based libraries, while achieving a 17 %
energy saving with comparable compression ratios.

I. INTRODUCTION

With exponentially increasing data volumes and the high
cost of enterprise data storage, data compression has become
essential for reducing storage costs in the Big Data era. There
exists a plethora of compression techniques, each having a
different trade-off between its compression ratio (compression
efficiency) and its speed of execution (bandwidth). Most
research so far has focused on the speed of compressing data
as data is loaded into an information system, but the speed
of decompressing that data can be even more important for
Big Data workloads — usually data is compressed only once
at load time but repeatedly decompressed as it is read when
executing analytics or machine learning jobs. Decompression
speed is, therefore, crucial to minimizing the response time of
these applications, which are typically I/O-bound.

In an era of flattening processor speeds, parallelism provides
our best hope of speeding up any process. In this work,
we leverage the massive parallelism provided by Graphics
Processing Units (GPUs) to accelerate decompression. GPUs
have already been successfully used to accelerate several other
data processing problems, while providing a better Perfor-
mance/Watt ratio than conventional CPUs, as well. However,
accelerating decompression on massively parallel processors
like GPUs presents new challenges. Straightforward paral-
lelization methods, in which the input block is simply split
into many, much smaller data blocks that are then processed
independently by each processor, result in poorer compression
efficiency, due to the reduced redundancy in the smaller
blocks, as well as diminishing performance returns caused by

per-block overheads. In order to exploit the high degree of
parallelism of GPUs, with potentially thousands of concurrent
threads, our implementation needs to take advantage of both
intra-block parallelism and inter-block parallelism. For intra-
block parallelism, a group of GPU threads decompresses the
same data block concurrently. Achieving this parallelism is
challenging due to the inherent data dependencies among the
threads that collaborate on decompressing that block.

In this paper, we propose and evaluate two approaches to
address this intra-block decompression challenge. The first
technique exploits the SIMD-like execution model of GPUs
to coordinate the threads that are concurrently decompressing
a data block. The second approach avoids data dependencies
encountered during decompression by proactively eliminat-
ing performance-limiting back-references during the compres-
sion phase. The resulting speed gain comes at the price
of a marginal loss of compression efficiency. We present
Gompresso/Bit, a parallel implementation of an Inflate-like
scheme [1] that aims at high decompression speed and is
suitable for massively-parallel processors such as GPUs. We
also implement Gompresso/Byte, based on LZ77 with byte-
level encoding. It trades off slightly lower compression ratios
for an average 3x higher decompression speed.

In summary, the contributions of this paper are:

e A technique to achieve massive intra-block parallelism
during decompression by exploiting the SIMD-like ar-
chitecture of GPUs.

o Improved intra-block parallelism by eliminating data de-
pendencies during compression.

¢ An evaluation of the impact of both techniques on com-
pression ratio and speed.

o Comparisons of Gompresso’s decompression speed and
energy efficiency on the Tesla K40 GPU against several
state-of-the-art multi-core CPU libraries, showing that
Gompresso/Bit is 2x faster while achieving a 17 %
energy saving.

Section II discusses related work. In Section III we analyze
how Gompresso parallelizes decompression to harvest the
massive parallelization of GPUs. Section IV focuses on the
alternative dependency resolution strategies we designed for
LZ77. Section V presents the experimental results of tuning
and comparing Gompresso against state-of-the-art parallel
CPU libraries. Finally, in Section VI we conclude and suggest
some interesting directions for future work.

II. RELATED WORK

In this section, we discuss related work in parallelizing
decompression. Although there are numerous compression
schemes, we focus in this section on just the parallelization
attempts of the best-known compression schemes. In the ex-
tended version of the paper [2], we provide a brief description
of the relevant background on data compression and a short
introduction to relevant aspects of modern GPU architectures.

a) Parallel CPU Implementations: A parallel implemen-
tation for CPUs of gzip compression in the pigz library [3]
achieves a linear speed-up of compression with the number
of CPU cores. Decompression in pigz, however, has to be
single-threaded because of its variable-length blocks. Another
CPU compression library, pbzip2 [4], parallelizes the set of
algorithms implemented by the bzip2 scheme. The input is
split into data blocks that can be compressed and decom-
pressed in parallel. As already described in the Introduction,
this inter-block parallelism alone is insufficient and results in
poor performance on GPUs.

b) Hardware-Accelerated Implementations: Parallelizing
compression schemes within a block is a bigger challenge
for massively-parallel processors. For example, the GPU im-
plementation of bzip2 did not improve performance against
the single-core CPU bzip2 [5]. The major bottleneck was
the string sort required for the Burrow-Wheeler-Transform
(BWT) compression layer. Future compressor implementations
could be accelerated by replacing string sort with suffix array
construction [6], [7], [8].

Most research has focused on accelerating compression,
rather than decompression [9]. Here, we address the thread
dependencies that limit the parallelism of the LZ77 decom-
pression. In our implementation each thread writes multiple
back-reference characters at a time, avoiding the high per
character cost. A parallel algorithm for LZ decompression,
depending on the type of data dependencies, does not guar-
antee efficient GPU memory access[10]. Huffman encoding is
typically added to improve the compression ratio[11]. How-
ever, decoding is hard to parallelize because it has to identify
codeword boundaries for variable-length coding schemes. Our
parallel decoding method splits data blocks into smaller sub-
blocks to increase the available parallelism. We trade-off
a little of compression efficiency but only make only one
pass over the encoded data. Alternative parallel decoding
algorithms do not affect the compression ratio but they require
multiple passes to decode the data for BWT decompression: A
first pass to determine the codeword boundaries and a second
for the actual decoding [7].

Simpler compression schemes have been implemented on
GPUs in the context of a database system [12], but while
these algorithms achieve good compression ratios for database
columns, they are not efficient for Big Data workloads that
might be unstructured. FPGAs and custom hardware have also
been used to accelerate compression, resulting in high speed-
ups [13], [14]. However, these hardware devices have very
different characteristics and constraints than GPUs, so their
parallelization techniques generally aren’t applicable to GPUs.

III. GOMPRESSO OVERVIEW

Here, we provide an overview of Gompresso, which ex-
ploits parallelism between and also within data blocks. The
main design goal for Gompresso is high decompression
speed, while maintaining a “reasonable” compression ratio.
Gompresso implements both compression and decompression,
and defines its own file format. Figure la gives an overview of
the Gompresso compression and decompression algorithms.
In this paper, we focus on the parallel decompression.

Gompresso/Byte can combine decoding and decompression
in a single pass because of its fixed-length byte-level coding
scheme. Figure 1b shows the structure of the compressed file
format in detail. The token streams can be read directly from
the compressed output. Gompresso/Bit uses a variable-length
coding scheme for a higher compression ratio, and therefore
needs to first decode the bitstream into a stream of tokens
before proceeding with the LZ77 decompression. Gompresso
assigns a group of GPU threads to collaborate on the Huft-
man decoding and LZ77 decompression on the independently
compressed data blocks. This permits an additional degree of
parallelism within data blocks.

1) Huffman Decoding: Each thread of a group decodes a
different sub-block of the compressed data block. The starting
offset of each sub-block in the bitstream is computed from the
sub-block sizes in the file header. All sub-blocks of a given
data block decode their bitstreams using look-up tables created
from the same two Huffman trees for that block and stored
in the software-controlled, on-chip GPU memories. We can
retrieve the original token symbol with a single lookup in each
table, which is much faster than searching through the (more
compact) Huffman trees, which would introduce branches and
hence divergence of the threads’ execution paths. The output
of the decoder is the stream of literal and back-references, and
is written back to the device memory.

2) LZ77 Decompression: Each data block is assigned to
a single GPU warp (32 threads operating in lock-step) for
decompression. We chose to limit the group size to one warp to
take advantage of the efficient voting and shuffling instructions
within a warp. Larger thread groups would require explicit
synchronization and data exchange via on-chip memory. We
found that the potential performance gain by the increased
degree of parallelism is canceled out by this additional coor-
dination overhead.

We first group consecutive literals into a single literal string.
We further require that a literal string is followed by a back-
reference and vice versa, similar to the LZ4 [15] compression
scheme. A literal string may have zero length if there is no
literal token between two consecutive back-references. A pair
consisting of a literal string and a back-reference is called a
sequence. We assign each sequence to a different thread (see
Figure 2). In our experiments, we found that this grouping
results in better decompression speed since it not only assigns
each thread a larger unit of work but its uniformity suits the
lock-step execution model of the GPU. All threads in the
warp concurrently alternate between executing instructions for

Compression
Thread group |

Subblock | Thread group |
ub-bloc]
Block | - b-block 2 ~Sub-block2 | —>
Thread group 2 oc
Block 2| > _.Sub-block |
. Sub-block 2
Sub-block 3
Thread group n 'ﬂm'll
Block > | Subblock? Subblock2
o ‘ ‘ [Subblock T [Sibbiock 1

LZ77 Compression Huffman Encoding Huffman Decoding

Uncompressed input LZ77 token stream Huffman coded bitstream = Huffman coded bitstream

(a) Compression and decompression algorithm parallelization in Gompresso.

Decompression

-

LZ77 token stream

File Header
Block 1

Uncompressed file size

1GB
Block size 32KB

: Dictionary size 4096
Maximum match length 256 Block 2
#Tokens/Sub-block 16
— Sub-block size list L.

1

Block n

Compressed file header Compressed file

Compressed Block Contents

LZ77 Decompression
Decompressed output 010101010001 10001111100110101110001100111

Literal tree Match distance tree Compressed bitstream

(b) Gompresso file format.

Fig. 1: Gompresso overview.

string literals and for back references. For each sequence, each
thread performs: (a) read its sequence from device memory
and compute the start position of its string literal, (b) determine
the output position of its literal, and copy its string literal to
the output buffer, and (c) resolve and write its back-reference.
We now describe each step in more detail:

a) Reading sequences: Each warp uses the block offset
to determine the location of the first decoded token in the
device memory. Each thread in the warp will read a different
sequence (see Figure 2). The threads then determine the start
location of their literal strings in the token stream by comput-
ing an intra-warp exclusive prefix sum from the literal lengths
of their sequences. We use NVIDIA’s shuffle instructions to
efficiently compute this prefix sum without memory accesses,
a common GPU technique.

b) Copying literal strings: Next, the threads compute
write positions in the decompressed output buffer. Since all
blocks, except potentially the last, have the same uncom-
pressed size, the threads can also easily determine the start
position of their block in the uncompressed output stream.
The start position of each thread’s literal string is determined
by a second exclusive prefix sum, which is then added to
the start position of the block. This prefix sum is computed
from the total number of bytes that each thread will write for
its sequence, i.e., the length of its literal string positions are

T1 T2 T3
Sequence 1 Sequence 2 Sequence 3

Read input 'aac', (0,3), ['b',(3,3), Idl, (3,4)

Writeliterilstrings‘a‘a‘c| ‘ ‘b‘ ‘ ‘ ‘d‘ | ‘ ‘ ‘
HWH=2 23456 78 91011121314
Tle:ZBl‘a‘a‘c‘a‘a‘c‘b|] [d]

0 123456 78 910111213 14
e (o[22 c[balalc[d[a[a[<[5
HWM=14

0 123456 78 910111213 14
Fig. 2: Multi-Round Resolution (MRR) execution

determined from the two prefix sums, the threads can copy the

literal strings from the token stream into the output buffer.
c) Copying back-references: This is the most challenging

step for parallel decompression because of the data depen-

dencies between threads in a warp. These dependencies arise
when a back-reference points to another back-reference, and
thus cannot be resolved before the former has been resolved.
We address these nested back-references in Section IV. After
all the back-references have been resolved, the warp continues
with the next 32 sequences.

IV. DATA DEPENDENCIES IN NESTED BACK-REFERENCES

Before processing a back-reference, the data pointed to
by this reference needs to be available in the output. This
introduces a data dependency and stalls threads with dependent
references until the referenced data becomes available. The
problem is illustrated in Figure 2. Threads T2 and T3 will
have to wait for T1 to finish processing its sequence, because
they both have back-references that point into the range that is
written by T1. Resolving back-references sequentially would
produce the correct output, but would also under-utilize the
available thread resources. To maximize thread utilization,
we propose two strategies to handle these data dependencies.
The first strategy uses warp shuffling and voting instructions
to process dependencies as soon as possible, i.e., as soon
as all of the referenced data becomes available. The second
strategy avoids data dependencies altogether by prohibiting
nested back-references during compression.

1: function MRR(HWM, read_pos, write_pos, length)

2 pending < true > thread has not written any output
3 do

4 if pending and read_pos+length<HWM then

5: copy length bytes from read_pos to write_pos

6 pending < false

7 end if

8: votes <— ballot(pending)

9: last_writer <— count_leading_zero_bits(votes)
10: HWM <« shfl(write_pos+length, last_writer)
11: while votes> 0 > Repeat until all threads done
12: return HWM

13: end function

Fig. 3: Multi-Round Resolution (MRR) Algorithm

A. Multi-Round Resolution (MRR) of Nested back-references

Figure 3 shows the Multi-Round Resolution (MRR) algo-
rithm for iterative resolution of nested back-references, which
is executed by every thread in the warp. We follow the GPU

programming convention in which each of the variables is
thread-private unless it is explicitly marked as locally or
globally shared. The Boolean variable pending is initially set
on 2 and is cleared once the thread has copied its back-
reference to the output (line 6).

Before calling MRR, all threads have written their literal
string from their sequence to the output, but no thread in the
warp has written a back-reference yet. In order to determine
when the referenced data becomes available, the threads keep
track of the high-water mark (HWM) position of the output
that has been written so far without gaps. A back-reference
whose referenced interval is below the HWM can, therefore,
be resolved. In each iteration, threads that have not yet written
their output use the high-water mark (HWM) to determine
whether their back reference can be resolved (line 4). If so,
they copy the data from the referenced sequence to the output,
and indicate that they completed their work (lines 5 and 6).

The HWM is updated at the end of each iteration. The
algorithm determines the last sequence that was completed
by the warp, and sets the HWM past the highest write
position of that sequence’s back-reference. The threads can
determine the last sequence without accessing shared memory
by exploiting the warp-voting instruction ballot on the
pending flag (line 8). This produces a 32-bit bitmap that
contains the pending states of all threads in this warp.
Each thread receives this bitmap and then counts the number
of leading zeros in the bitmap to determine the ID of the
last_writer thread that completed the last sequence. A
subsequent warp-shuffle instruction broadcasts the new HWM
computed by the last_writer thread to all other threads
in the warp (line 10). The iteration completes when all threads
have processed their back-references.

Figure 2 illustrates the execution of MRR. Initially, all
threads write in parallel their string of literals. In the next
step, T1 copies the back-reference of Sequence 1. In the last
step, after Sequence 1 has been processed, the dependencies
of T2 and T3 are satisfied, so both threads can proceed to
copy their back-references.

At least one back-reference is resolved during each iteration
which guarantees termination of the algorithm. The degree of
achievable parallelism depends on nesting of back-references.
As soon as the referenced ranges falls below the HWM they
can be resolved simultaneously. Back-references that do not
depend on data produced by other back-references from the
same warp can be resolved in one round leading to maximum
parallelism of the warp. In the worst-case scenario, all but
one back-reference depends on another back-reference in the
same warp. MRR then leads to sequential execution. The next
section describes a strategy that avoids this scenario.

B. Dependency Elimination (DE)

In this strategy, we trade off some compression efficiency to
avoid MRR’s run-time cost of iteratively detecting and resolv-
ing dependencies during decompression. During compression,
we prohibit nested back-references that would create data
dependencies within the same warp. This does not eliminate

1: pos <0
2: while pos<blocksize do
3: warpHWM < pos

4: s« 0

5: literal_str <

6: while s < 32 do

7: match < find_match_below_hwm(dict, input,
8: warpHWM)

9: if match found then

10: emit_sequence((literal_str, match))

11: update_dictionary_with_backref(dict, match)
12: pos < pos + match.length

13: s s+ 1

14: literal_str <

15: else

16: b < get next byte from input

17: literal_str < literal_str | b

18: update_dictionary_with_literal_byte(dict, b)
19: pos < pos +1
20: end if

21: end while
22: end while

Fig. 4: Modified LZ77 compression algorithm with DE

all nested back-references, only those that would depend
on other back-references within the same warp. Prohibiting
these same-warp back-references generally results in a slightly
lower compression ratio and more effort during compression,
due to the additional checking and bookkeeping. As we will
show in Section V, the degradation in compression ratio and
compression speed is acceptable. In return, however, we get a
2-3x gain in decompression speed.

Dependency elimination works as follows: For every group
of 32 sequences that will eventually be decompressed by the
same warp of threads, we only look for dictionary matches
below a certain warp high-water mark (warpHWM). By choos-
ing the warpHWM to be the cursor position in the input that
has been completed previously by the warp, we avoid back-
references that would otherwise lead to data dependencies.
Figure 4 shows the modified LZ77 compression algorithm. The
warpHWM is updated only after a group of 32 sequences have
been completely processed (line 3). Threads that cooperate in
the compression perform the string matching in parallel in

T T
Sequence 1 Sequence 2

<1,'n'(278,3)><1,'d", (284,4)>

Jlalalclalf|c|blajalc|d|bfalalc

HWM=283

278 284
No dependency elimination
T T
TWW=Z83 Sequence 1 Sequence 2

<1,'0'(278,3)><2,'db', (278,3)>

+|lajalc|a|f|c|blalalc|d|blalalc

278 284
Dependency elimination

Fig. 5: Resulting token stream without and with DE

find_match_below_hwm (line 8). They only look for a
match below the current warpHWM. If no match is found, the
next input byte is added to the literal string (line 17) and to
the dictionary (line 18). Otherwise, if a match is found, the
thread closes and emits the output sequence comprising the
current literal string and the found match as a back-reference
(line 10). Then the dictionary is updated with the found match.
The variable “pos” keeps track of the cursor position in the
processed input. Figure 5 illustrates the algorithm with an
example. The dependency of T2 on T1 is avoided by choosing
a shorter match in the back-references for Sequence 2.

Since our Gompresso work is focused on decompression,
our implementation of the compressor is not as highly opti-
mized as the most commonly used data compression libraries.
We decided to also implement the DE algorithm in the LZ4
compression library (CPU-only) [15] to measure the impact
that the dependency elimination has on compression speed
and the resulting compression ratio. In addition to the DE
algorithm itself, we also had to implement the logic for
find_match_below_hwm() (line 8) by modifying the
match-finding component in the LZ4 library so that it only
returns matches below a certain HWM.

V. EXPERIMENTAL EVALUATION

We evaluate Gompresso using two different datasets. The
first is a 1GB XML dump of the English Wikipedia [16].
The second dataset is the “Hollywood-2009” sparse matrix
stored as a 0.77 GB Matrix Market file [17]. Both sets are
highly compressible. For comparison, the gzip tool achieves a
compression ratio of 3.09:1 for the former and 4.99:1 for the
latter, using the default compression level setting (—6). The
performance measurements are conducted on a dual-socket
system with two Intel E5-2620 v2 CPUs, 2 X 6 cores running
24 hardware threads. We add an NVIDIA Tesla K40 with
2,880 CUDA cores to the system for the GPU measurements.
The device is connected via a PCI Express (PCle) 3.0 x16 link
with a nominal bandwidth of 16 GB/sec in each direction. We
report bandwidth numbers that include PCle transfers. When
the PCIe bandwidth becomes the bottleneck, we report the
bandwidth with input and output data residing in the GPU’s
device memory. ECC is turned on in our measurements. We
determine the decompression bandwidth as the ratio of the
size of the uncompressed data over the total processing time.
Unless otherwise noted, we are using a data block size of
256 KB and a sliding window of 8 KB. For compression, we
look at the next 64 bytes in the input for each match search in
the 8 KB window. To facilitate parallel Huffman decoding in
Gompresso/Bit, we split the sequence stream into sub-blocks
that are 16 sequences long.

Performance Impact of Nested back-references: We first
focus on just the LZ decompression throughput of Gom-
presso/Byte, i.e., with no entropy coding, for different res-
olution strategies in Figure 6. Sequential Copying (SC) is
our baseline resolution strategy, in which threads copy their
back-references in a sequential order without intra-block par-
allelism. The figure shows that Dependency Elimination (DE)

25 F T T =

sc ==
MRR —
20 DE == -
15 F

10 -

5|

Decompression speed (GB/s)

o 7
Wikipedia

Matrix

Fig. 6: Decompression speed of Gompresso/Byte (data trans-
fer cost not included)

4 . : 2300 T
035 w/o DE |
2731 w/DE zzzzm | 5250 [
c $200 | B
8251 1 &
g 2f 1 1o g
5151 7 @100 | B
Sost 1 g 50 - 7

o E %

Matrix © Wikipedia

Fig. 7: Degradation in compression ratio and speed

is the fastest strategy for decompression. It is at least 5x faster
than SC. We place the compressed input and the decompressed
output in device memory in this setup, and ignore PCle
transfers. The figure shows that the decompression throughput
is higher than the theoretical maximal bandwidth of the PCle
link. As expected, Multi-Round Resolution (MRR) performs
better than SC due to the higher degree of parallelism, while
DE outperforms MRR because it achieves an even higher
degree of parallelism.

Impact of DE on Compression Ratio and Speed: Figure 7
shows the degradation in compression ratio and compression
speed when eliminating dependencies using the Dependency
Elimination (DE) algorithm we implemented by modifying the
LZ4 library. The maximum degradation is 13 % in compres-
sion speed and 19 % in compression ratio, which is acceptable
when we are aiming at fast decompression. In the remaining
experiments, we use DE for decompression.

GPU vs. Multi-core CPU Performance: Lastly, we com-
pare the performance of Gompresso to state-of-the-art parallel
CPU libraries regarding decompression speed and overall en-
ergy consumption. We used a power meter to measure energy
consumption at the wall socket. For CPU-only environments,
we physically removed the GPUs from our server to avoid
including the GPU’s idle power. We parallelized the single-
threaded implementations of the CPU-based state-of-the-art
compression libraries by splitting the input data into equally-
sized blocks that are then processed by the different cores in
parallel. We chose a block size of 2 MB, as this size resulted in
the highest decompression speeds for the parallelized libraries.
Once a thread has completed decompressing a data block, it
immediately processes the next block from a common queue.
This balances the load across CPU threads despite input-
dependent processing times for the different data blocks.

Figures 8a and 8b show the trade-offs between decom-
pression speed and compression ratio. In addition to the
measurements of our Gompresso system, we include the

Speed/Ratio English Wikipedia

Speed/Ratio Sparse Matrix

Energy/Ratio English Wikipedia

18 T T T
16 |
14 |
12

T T T T T T T T
.Gomp/Byte (No PCle)
Gomp/Byte (In)
G Byte (I

P RRG ™
Gomp/Byte (In/Out)

T Gomp/Byte (In/Out)
. Snappy (CPU) J
Gomp/Bit
.Zstd qCPU) i 4

zlib (CPU)

3 Lz4 (CPU)
([J

Decompression speed (GB/s)

oN & O ®
T

L Y Snappy (CPU)

j . 'Z\ib N
o Zstd. Gomp/Bit

90
80
70
60

50

4W0F @ SERRYByte (Inout) 1
Lz4
30 @Fomp/Byte (No PCle)]

Energy (Joules)

Gomp/Bit T
o Zs.“’(c"éﬁ)o cpu)]

20 ! ! ! ! ! ! ! !

18 2 22 24 26 28 3 32 34
Compression ratio

Decompression speed (GB/s)

2 2.5 3 35

(@) (b)

Compression ratio

18 2 22 24 26 28 3 32 34
Compression ratio

©

4.5 5 5.5 6 6.5

Fig. 8: Gompresso evaluation against multi-core state-of-the-art CPU libraries

performance of two byte-level compression libraries (LZ4,
Snappy) and for two libraries using bit-level encoding (gzip,
zlib) for comparison. Zstd implements a different coding al-
gorithm on top of LZ-compression that is typically faster than
Huffman decoding, and we include it in our measurements
for completeness [18]. zlib implements the DEFLATE scheme
for the CPU. For the GPU measurements, we show the end-
to-end performance, including times for: (a) both compressed
input and uncompressed output over PCle, marked (In/Out);
(b) only the input transfers, marked as (In); and (c) ignoring
data transfers altogether, marked as No PCle.

For Gompresso/Byte, PCle transfers turned out to be the
bottleneck. In separate bandwidth tests, we were able to
achieve a PCle peak bandwidth of 13 GB/sec. Gompresso/Bit,
though not PCle-bound, is still 2x faster than zlib and
Gompresso/Byte is 1.35x faster than LZ4. For the matrix
dataset, the decompression speed of Gompresso/Bit is around
2x faster than zlib. There is around 9 % degradation in com-
pression ratio because we use limited-length Huffman coding.
Although it lowers the compression efficiency, it enables us to
fit more Huffman decoding tables into the on-chip memory.

Finally, we compare the energy consumed to decompress
the Wikipedia dataset. In general, faster decompression on the
same hardware platform results in improved energy efficiency.
This is because the power drawn at the system level, i.e., at the
wall plug, does not differ significantly for different algorithms.
More interesting is the energy efficiency when comparing
different implementations on different hardware platforms,
e.g., a parallel CPU vs. a GPU solution. Figure 8c shows the
overall energy consumption versus the compression ratio for
Gompresso and a number of parallelized CPU-based libraries.
Gompresso/Bit consumes around 17 % less energy than the
parallel zlib library. It also has similar energy consumption to
Zstd, which implements a faster coding algorithm.

VI. CONCLUSIONS AND FUTURE WORK

Here, we developed techniques within our compression
framework, Gompresso, for massively parallel decompression
using GPUs. We presented one solution for parallelizing
Huffman decoding by using parallel sub-blocks, and two
techniques to resolve back-references in parallel. The first
technique iteratively resolves back-references and the second
eliminates data dependencies during compression that will stall
parallelism among collaborating threads concurrently decom-

pressing that set of sub-blocks. Gompresso decompresses two
real-world datasets 2x faster than the state-of-the-art block-
parallel variant of zlib running on a modern multi-core CPU,
while suffering no more than a 10 % penalty in compression
ratio. Gompresso also uses 17 % less energy by using GPUs.
Future work includes determining the extent to which our
techniques can be applied to alternative coding and context-
based compression schemes, and evaluating their performance.

ACKNOWLEDGMENT

Authors Evangelia Sitaridi and Kenneth Ross were partially
supported by National Science Foundation grant IIS-1218222
and by an equipment gift from NVIDIA Corporation.

REFERENCES

[1] P. Deutsch, “DEFLATE compressed data format specification version
1.3,” RFC 1951 (Informational), IETF, may 1996.

[2] E. Sitaridi, R. Mueller, T. Kaldewey, G. Lohman, and
K. Ross, “Massively-parallel lossless data decompression,”
CoRR, vol. abs//1606.00519, 2016. [Online]. Available:

http://arxiv.org/abs/1606.00519

[3] M. Adler, “Parallel gzip,” http://zlib.net/pigz/, accessed: 2015-04-02.

[4] 1. Gilchrist and Y. Nikolov, “Parallel BZIP2,”
http://compression.ca/pbzip2/, accessed: 2015-04-02.

[5] R. A. Patel, Y. Zhang, J. Mak, A. Davidson, and J. D. Owens, “Parallel
lossless data compression on the GPU,” in InPar, May 2012, p. 9.

[6] M. Deo and S. Keely, “Parallel suffix array and least common prefix for
the GPU,” in PPoPP, 2013, pp. 197-206.

[7] J. A. Edwards and U. Vishkin, “Parallel algorithms for Burrows—Wheeler
compression and decompression,” TCS, vol. 525, pp. 10 — 22, 2014.

[8] L. Wang, S. Baxter, and J. D. Owens, “Fast parallel suffix array on the
GPU,” in Euro-Par, 2015, pp. 573-587.

[9]1 A. Ozsoy and M. Swany, “CULZSS: LZSS lossless data compression

on CUDA,” in CLUSTER, 2011, pp. 403-411.

S. D. Agostino, “Speeding up parallel decoding of LZ compressed text

on the PRAM EREW,” in SPIRE, 2000, pp. 2-7.

A. Ozsoy, D. M. Swany, and A. Chauhan, “Optimizing LZSS compres-

sion on GPGPUs,” FGCS, vol. 30, pp. 170-178, 2014.

[12] W. Fang, B. He, and Q. Luo, “Database compression on graphics

processors,” Proc. VLDB Endow., vol. 3, no. 1-2, pp. 670-680, 2010.

[13] Xilinx, “GUNZIP/ZLIB/Inflate data decompression core,”

http://www.xilinx.com/products/intellectual-property/1-79drsh.html,

accessed: 2015-11-14.

M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a chip: High

performance lossless data compression on FPGAs using OpenCL,” in

IWOCL, 2014, pp. 4:1-4:9.

[15] Y. Collet, “LZA4—extremely fast

https://github.com/Cyan4973/1z4, accessed: 2015-04-02.

M. Mahoney. Large text compression benchmark. [Online]. Available:

http://mattmahoney.net/dc/enwik9.zip

[17] UF sparse matrix collection. [Online]. Available:

http://cise.ufl.edu/research/sparse/MM/LAW/hollywood-2009.tar.gz

Y. Collet, “Zstandard—fast and efficient compression algorithm,”

https://github.com/Cyan4973/zstd, accessed: 2015-04-02.

[10]

(11]

[14]

compression,”

[16]

(18]

