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inating disk I/O operations. Modern processors integrate multiple
each with wide vector (SIMD) units. Although

operation. Modern processors provide tremendous computing powe'€mory bandwidth has also been increasing steadily, the band-

by integrating multiple cores, each with wide vector units. There
has been much work to exploit modern processor architectures for
database primitives like scan, sort, join and aggregation. However,

unlike other primitives, tree search presents signibcant challenges

width to compute ratio is reducing, and eventually memory band-

width will become the bottleneck for future scalable performance.
In the database community, there is growing interest in exploit-

Recently, re-

ing the increased compute in modern processors.

due to irregular and unpredictable data accesses in tree traversal. S€archers have explored speedipgcutical primitives like scan,

In this paper, we present FAST, an extremely fast architecture
sensitive layout of the index tree. FAST is a binary tree logically
organized to optimize for architecture features like page size, cache
line size, and SIMD width of the underlying hardware. FAST elimi-
nates impact of memory latency, and exploits thread-level and data-
level parallelism on both CPUs and GPUs to achieve 50 million
(CPU) and 85 million GPU) queries per second, 5X (CPU) and
1.7X (GPU) faster than the best previously reported performance

on the same architectures. FAST supports efbcient bulk updates by

rebuilding index trees in less than 0.1 seconds for datasets as larg

as 64M keys and naturally integrates compression techniques, over-

coming the memory bandwidth bottleneck and achieving a 6X per-

formance improvement over uncompressed index search for large

keys on CPUs.

Categories and Subject Descriptors
H.2 [Database Managemerijt Systems
General Terms

Performance, Algorithms

1. INTRODUCTION

Tree structured index search is a critical database primitive, used

in a wide range of applications. In todayOs data warehouse system§

many data processing tasks, such as scientibc data mining, networ
monitoring, and Pnancial analysis require handling large volumes
of index search with low-latency and high-throughput.

As memory capacity has increased dramatically over the years,
many database tables now reside completely in memory, thus elim-
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sort, join and aggregation [30, 11, 22, 12]. However, unlike these
primitives, index tree search presents signibPcant challenges in uti-
lizing the high compute and bandwidth resources. Database search
typically involves long latency for the main memory access fol-
lowed by small number of arithmetic operations, leading to inef-
fective utilization of large number of cores and wider SIMD. This
main memory access latency is difpcult to hide due to irregular and
unpredictable data accesses during the tree traversal.

In this paper, we preseRAST (Fast Architecture Sensitive Tree)
earch algorithm that exploits high compute in modern processors
or index tree traversal. FAST is a binary tree, managed as a hier-
archical tree whose elements are rearranged based on architecture
features like page size, cache line size, and SIMD width of underly-
ing hardware. We show how to eliminate the impact of latency with
hierarchically blocked tree, software pipelining, and prefetches.

Having eliminated memory latency impact, we show how to ex-
tract parallelism to achieve high throughput search on two high per-
formance commodity architectures b CPUs and GPUs. We report
thefastestsearch performance on both platforms by utilizing many
cores and wide SIMD units. Our CPU search performance on the
Core i7 with 64M 32-bit (key, rid) pairs iSX faster than the best
reported number, achieving a throughput58M search queries
per second. We achieve peak throughput even within a stringent
esponse time constraint of 1 microsecond. Our GPU search on
he GTX 280 is around 1.7X faster than the best reported num-
ber, achieving85M search queries per second. Our high through-
put search is naturally applicable to look-up intensive applications
like On-Line Analytical Processing (OLAP), DSS and data mining.
Also, we can re-build our index trees in less than 0.1 seconds for
64M keys on both CPU and GPU, enabling fast bulk updates.

We compare CPU search and GPU search and provide analytical
models to analyze our optimized search algorithms for each plat-
form and identify the compute and bandwidth requirements. When
measured with various tree sizes from 64K elements to 64M ele-
ments, CPU search is 2X faster than GPU search for small trees
where all elements can bt in the caches, but 1.7X slower than GPU
search for large tree where memory bandwidth limits the perfor-

11M refers to 1 million.



mance. We also evaluate FAST search algorithm on the Intel Many- with the same probability. Instead of prefetching all (or a subset
Core Architecture Platform (MICA), a Larrabee [29] based silicon of ) children speculatively, our scheme waits until we know the
platform for many-core research and software development. By correct child to move to, and only prefetches the correct child. To
exploiting wider SIMD and large caches, search on the MICA plat- increase the prefetch distance (i.e., the number of cycles between
form results in 2.4X - 3X higher throughput than CPU search and a prefetch initiation and the use of the prefetched data), we use
1.8X - 4.4X higher than GPU search. software pipelining [3]. Note that we do not waste main memory
Search on current GPUs is compute bound and not bandwidth bandwidth due to the issue of unnecessary prefetches speculatively
bound. However, CPU search becomes close to memory bandwidth- this is important because memory bandwidth is a critical resource.
bound as the tree size grows. Compressing the index elements will Another way of reducing TLB/cache miss overheads is to amor-
reduce bandwidth consumption, thereby improving CPU search per-ize the penalties by processing data in batches [4, 32]. Buffers are
formance. We therefore proposempression techniquesor our attached to nodes or sub-trees and queries are processed in batch.
CPU search that seamlessly handles variable length string keys and@’hese batched search schemes essentially sacribce response time
integer keys. Our compression extends the commonly used prebxto achieve high throughput and can only be used for applications
compression scheme to obtain order preserving partial keys with where a large number of query requests arrive in a short amount of
low overhead of false positives. We exploit SSE SIMD execution time, such as stream processing or indexed nested loop join.
to speed up compression, compressing 512MB string keys in less Modern processors exploit SIMD execution to increase com-
than 0.05 seconds for key sizes up to 100B on the Core i7. We in- pute density. Researchers have used SIMD instructions to improve
tegrate our fast SIMD compression technique into the FAST search search performance in tree structured index [28, 31]. Zhou et al. [31]
framework on CPUs and achieve up @X further speed up for employ SIMD instructions to improve binary search performance.
100B keys compared to uncompressed index search, by easing thénstead of comparing a search key with one tree element, SIMD in-
memory bandwidth bottleneck. structions allovwK (=SIMD width) consecutive elements to be com-
Finally, we examine four different search techniques B FAST, pared simultaneously. However, their SIMD comparison in a node
FAST with compression, buffered scheme, sort-based scheme bnly splits the search into two ranges just as in binary search. Over-
under the constraint of response time. For the response time ofall, the total computation complexity is still |6/ K). Recently,
0.001 to 25 ms, FAST on compressed keys provides the maximum P-ary and K-ary search have been proposed to exploit SIMD execu-
throughput of around 60M queries per second while the sort-basedtion on GPUs [21] and CPUs [28]. Using the GPUOs memory gather
scheme achieves higher throughput for the response time of greatercapability, P-ary accelerates search on sorted lists. The SIMD com-
than 30 ms. Our architecture sensitive tree search with efbcientparison splits the tree int(K + 1) ranges, thus reducing the total
compression support lends itself Wl exploiting the future trends number of comparisons by a larger number ofl@y). To avoid
of decreasing bandwidth-to-compute ratio and increasing computenon-contiguous memory accesses at each level, they linearize the

resource with more cores and wider SIMD. K-ary tree in increasing order of levels by rearranging elements.
However, when the tree is large, traversing the bottom part of the
2. RELATED WORK tree incurs TLB/cache misses at each level and search becomes la-

i . . ncy bound. We explore latency hiding techniques for CPUs and
B+-trees [13] were designed to accelerate searches on disk-base PUs to improve instruction thughput, resiing in better SIMD

database systems. As main memory sizes become large enough to,..” " .
store databases, T-trees [23] have been proposed as a replacemer%{tlhzat'on' . . . .
' " Another architectural trend affecting search is that main mem-

specibcally tuned for main memory index structure. While T-trees rv bandwidth is becoming a critical resource that can limit per-
have less storage overhead than B+-trees, Rao et al. [25] showe y . 9 e P
ormance scaling on future processors. Traditionally, the problem

+- i -
that B+-trees actually haV(_e bett_er cache behav[or on modern pro has been disk 1/0 bandwidth. Compression techniques have been
cessors because the data in a single cache line is utilized more efp-

ciently and used in more comparisons. They proposed a CSS-treeused to overcome disk I/O bottleneck by increasing the effective

) ; . . memory capacity [15, 17, 20]. The transfer unit between mem-
where each node has a size equal to the cache line size with noo and processor cores is a cache line. Compression allows each
child pointers. Later, they applied cache consciousness to B+-trees ry P ' P

. cache line to pack more data and increases the effective memory
and proposed a CSB+-tree [26] to support efbcient updates. Graef . o ; .
et al. [16] summarized techniques of improving cache performance%andW'qth' This increased memory bandv_wdth can Improve query
on B-tree indexes. processing speed as long as decompressmn overhea}d is kept mini-
mal [19, 33]. Recently, SIMD execution has been applied to further

Hankins et al. [18] explored the effect of node size on the perfor- . ! )
: ] reduce decompression overhead in the context of scan operations
mance of CSB+-trees and found that using node sizes larger than &

cache line size (i.e., larger than 512 bytes) produces better SearChonv(\:/ﬁ?ep:ﬁ;s:cijsdn&;tjacl[??lsearch on handlina numerical data in in-
performance. While trees with nodes that are of the same size as a gnt .

cache line have the minimum number of cache misses, they founddex trges [9’.18’ 21, 25, 26, 28], there are relatlvely.few stud|gs on
that TLB misses are much higher than on trees with large node handling variable I_ength keys [5, 7 8]. Compression techniques
sizes, thus favoring large node sizes. Chen at al. [9] also concluded”®" b_e used to shrink 'Onger keys_ into smaller keys. For tree struc-
that having a B+-tree node size larger than a cache line performstuer indexes, compressing keys Increases the fanout of the tree and
better and proposed pB+-trees, which tries to minimize the increasedecre"jlses the tree height, thus improving search performance by

of cache misses of larger nodes by inserting software prefetches.rEduc'hngggafhﬁ mlg‘lses. B'an'g .it al. .[7] appl)k/] thfe.'ded? of buffered
Later, they extended pB+-trees (called OfpB+-treesO) to optimize> S o [32] to handle variable sikeys in a cache-friendly manner

for both disk /0 and CPU caches for disk-based DBMS [10]. when the response time is of less concern as compared to through-

While using prefetches in pB+-trees reduces cache misses in thepUt and lookups can be handiled in bulk.
search within a node, all published tree structured indexes suffer

from a full cache miss latency when moving from each node to its 3. ARCHITECTURE OPTIMIZATIONS

child. Chen at al. argue that prefetching the children is not efbcient  Efpbcient utilization of compute resources depends on how to
because the tree node fanout is large and each child will be visitedextract instruction-level parallelism (ILP), thread-level parallelism
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(TLP), and data-level parallelism (DLP) while managing usage of technique basically rearranges data elements so that the subsequent

external memory bandwidth judiciously. elements to be used also reside within the same cache line.
Finally, data compression techniques can be used to pack more
3.1 ILP data elements into a cache line and prevent performance to be band-

Most CPUs and GPUs are capable of issuing one or more in- Width bound. In Section 6, we show integrating data compres-
structions per cycle. The latency of memory instructions can pre- sio_n_into our index tree framework to improve performance besides
vent execution of other instructions. Every memory access must 9aining more effective memory space.
go through a virtual-to-physical address translation, which is in the

critical path of program execution. To improve translation speed, 4. ARCHITECTURE SENSITIVE TREE

a translation look aside buffer (TLB) is used to cache translation  \ye motivate and describe our index tree layout scheme. We also
of most frequently accessed pages. If the translation is not found yoyide analytical models highlighting the compute and memory

in the TLB, processor pipeline stalls until the TLB miss is served. pangwidth requirements for traversing the resultant trees.
Both last-level cache (LLC) and TLB misses are difpcult to hide be-

cause the miss penalty reaches more than a few hundred cycles. 14.1  Motivation

the miss penalty cannot be hiddenprocessor caot fully utilize Given a list of (key, rid) tuples sorted by the keys, a typical query
its compute resources and applications become memory latencynyolves searching for tuples containing a specibc keyq) or a
bound. At this point, expliting SIMD vector uiits is meff_ectlve. range of keys feyq:, keyqz]). Tree index structures are built us-
One way to reduce the memory access latency is prefetches.ing the underlying keyso facilitate fast search operations B with
However, hardware prefetcher is not effective for irregular memory ,n-time proportional to the depth of the trees. Typically, these
accesses like tree traversal. Software prefetch instructions are alsqQreeg are laid out in a breadth brst fashion, starting from the root
hard to insert for tree structured indexes. Prefetching tree nodesyf the tree. The search algorithm involves comparing the search
close to the current node results in very short prefetch distance andkey to the key stored at a specibc node at every level of the tree,
most prefetches will be too late to be effective. Tree nodes fardown and traversing a child node based on the comparison results. Only
from the current node can create a large fan out and prefetching allone node at each level is actually accessed, resulting in ineffective
tree elements down wastes memory bandwidth signibcantly sincecache line utilization, to the linear storage of the tree. Furthermore,
only one of prefetches will be useful. as we traverse deeper into the tree, each access results in accessing
elements stored in different pages of memory, thereby incurring
3.2 TLP/DLP TLB misses. Since the result of the comparison is required before
Once memory latency impact is minimized, we can exploit high loading the appropriate child node, cache line prefetches cannot be
density compute resources in modern processors, which have inissued beforehand. On modern processors, a search operation typ-
tegrated many cores, each with wider vector (SIMD) units. Paral- ically involves a long-latency TLB/cache miss followed by small
lelization and vectorization are two key techniques to exploit com- number of arithmetic operations @ach level of the treeleading
pute resources. Parallelization in search can be done trivially by to ineffective utilization of the processor resources.
assigning threads to different queries. Each core executes different Although blocking for disk/memory page size has been proposed
search queries independently. in the past [13], the resultant trees may reduce the TLB miss la-
As for exploiting SIMD, there are multiple approaches to per- tency, but do not necessarily optimize for effective cache line uti-
forming search. We can use a SIMD unit to speed up a single query,lization, leading to higher bandwidth requirements. Cache line
assign different queries to each SIMD lane and execute multiple wide nodes [25] minimize the number of accessed cache lines,
queries in parallel, or combine these two approaches by assigning eut cannot tilize SIMD instructions effectively. Recently, 3-ary
query to a subset of SIMD lanes. The best approach depends on therees [28] were proposed to exploit the 4-element wide SIMD of
underlying hardware architectures such as the SIMD width and ef- CPUs. They rearranged the tree nodes in order to avoid expen-
bciency of gathering and scatterfripta. In Section 5, we describe  sive gather/scatter operations. However, their tree structure does

the best SIMD search mechanism for both CPUs and GPUs. not naturally incorporate cache line/page blocking and their perfor-
. mance suffers for tree sizes larger than the last-level cache (LLC).
3.3 Memory Bandwidth In order to efbciently use the compute performance of processors,

With the increased compute capability, the demand for data also it is imperative to eliminate the latency stalls, and store/access trees
increases proportionally. However, main memory bandwidth is in & SIMD friendly fashion to further speedup the run-time.
growing at a lower rate than compute [27]. Therefore, performance . : .
will not scale up to the number of cores and SIMD width if ap- 4.2 Hierarchical BIOCkmg
plications become bandwidth bound. To bridge the enormous gap We advocate building binary trees (using the keys of the tuple)
between bandwidth requirements and what the memory system car@s the index structure, with a layout optimized for the specipc ar-
provide, most processors are equipped with several levels of on-chitectural features. For tree sizes larger than the LLC, the per-
chip memory storage (e.g., caches on CPUs and shared buffer orfformance is dictated by the number of cache lines loaded from the
GPUs). If data structures being accessed bt in this storage, no bandmemory, and the hardware features available to hide the latency due
width is utilized, thus amplifying the effective memory bandwidth. to potential TLB and LLC misses. In addition, the Prst few levels of
However, if data structures are too big to bt in caches, we should the tree may be cache resident, in which case the search algorithm
ensure that a cache line brougitim the memory be fully utilized ~ should be able to exploit the SIMD architecture to speed up the
before evicted out of caches (called Ocache line blocking®). A cachéun-time. In order to optimize for bthe architectural features, we
line with a typical size of 64 bytes can pack multiple data elements rearrange the nodes of the binary index structuredocking in a
in it (e.g., 16 elements of 4 byte integers). The cache line blocking hierarchical fashion. Before explaining our hierarchical blocking
scheme in detail, we Prst dePne the following notation.

2In this paper, we use the term Ogather/scatterO to represent read/write
from/to non-contiguous memory locations
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__ Cache line Blocking
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dN
dK Depth of SIMD Blocking
dL Depth of Cache Line Blocking
dP Depth of Page Blocking
.\ dN Depth of Index Tree

Index Tree
(Only Keys)

Node Array
(Keys + Rids)

Figure 1: (a) Node indices (=memory locations) of the binary tree (b) Rearrangd nodes with SIMD blocking (c) Index tree blocked in three-level
hierarchy B brst-level page blocking, second-level cache line blocking, third-level SIMD blocking.

E : Key size (in bytes).

K : SIMD width (in bytes).

L : Cache line size (in bytes).

C : Last level cache size (in bytes).

P : Memory page size (in bytes).

N : Total Number of input keys.

Nk : Number of keys that can bt into a SIMD register.
N, : Number of keys that can bt into a cache line.
Np : Number of keys that can bt into a memory page.
dk : Tree depth of SIMD blocking.

d; : Tree depth of cache line blocking.

dp : Tree depth of page blocking.

dy : Tree depth of Index Tree.

In order to simplify the computation, the parametts, N, and

rid) tuples. Our framework for architecture optimized tree layout
preserves the structure of the binary tree, but lays it out in a fashion
optimized for efbcient searches, as explained in the next section.

4.3 Compute and Bandwidth Analysis

We Pbrst analyze the memory access pattern with our hierarchi-
cally blocked index tree structure, and then discuss the instruction
overhead required for traversing the restructured tree djetle-
note the depth of the index tree. Consider Figure 1(c). Assuming a
cold cache and TLB, the comparison to the root leads to a memory
page access and a TLB miss, and say a latenty of/cles. The
appropriate cache line is fetched from the main memory into the
cache, incurring a further latency of siycycles. We then access
the necessary elements for the néxtlevels (elements within the
top red triangle in the bgure) h€ subsequent access incurs a cache

Nk are set to be equal to the number of nodes in complete binary miss, and a latency df cycles. At an averageidp/d; $ cache

sub-trees of appropriate depth&or example/Np is assigned to be

equal to 87-1, such thaE(297-1) " PandE(297*1-1) > P. Sim-

ilarly, N; =29-1 andNk = 29 -1. Consider Figure 1 where we
let N =31,d; =5anddk = 2. Figure 1(a) shows the indices of the

lines will be accessed within the brst page (the top green triangle).
Therefore, the total incurred latency for any memory page would
be (p + #dp/d; H, ) cycles. Going to the bottom of the complete
index tree would requiréd, /dp$ page accesses, for an average

nodes of the binary tree, with the root being the key corresponding jncyrred latency ofidy, /dp$(1 p + #dp/d, $; ) cycles?.

to the 13" tuple, and its two children being the keys corresponding

To take into account the caching and TLB effect, dgyout of

h : i .
to the 7" and 23 tuples respectively, and so on for the remaining ne d,  levels bt in the last level cache. Modern processors have

tree. Traditionally, the tree is laid out in a breadth-brst fashion in 5 reasonable size TLB, but with a random query distribution, it is
memory, starting from the root node. _ reasonable to assume just the entry for the top page to be in the
For our hierarchical blocking, we start with the root of the binary - page taple during the execution of a random search. Therefore, the
tree and consider the sub-tree willp elements. The prslk average incurred latency will be @e/dy )(#dy /dp$tp/d, $1, )
elements are laid out in abrea(_jth-brst fashlon. Thus, |r_1_F|gure 1(b), | p(#dy /dp$-1) cycles (ignoring minimal latency of accessing
the Prst three e'e”?e”ts are laid out, starting from position 0'_ Each cache lines from the cache). The resultant external memory band-
of the (Nk + 1) children sub-trees (of deptlik ) are further laid width will be L (1-de/dp )(#d /dp$tipld, $) bytes.
out in the same fashion, one after another. This corresponds to the  x o o1 the computational overhead, our blocking structure in-
sub-tree_s (of dgpth 2) atpositions 3, 6, 9 and 12in Figure 1(_b)'_ This volves computation of the starting address of the appropriate SIMD
process is carried out for all sub-trees that are completely within the chunk, cache line, page block once we cross the appropriate bound-
brstd; levels from the root. In case a sub-tree being considered ary. For each crossed boundary, the computation is simply an accu-
Co ) o )
(cjioels_not ck?mpletely !|e wnhm;he I?rlsg Ieve!; (cli.e. wherEL /0 mulated scale-shift operation (multiply-add followed by add) due to
Kd._hO)‘ } € apprcl)p(rjlate nurr(lj er O'b e&/elﬁL( bd) are osben, __the linear address translation scheme. For example, when crossing
ahn 1t € etf)sments ald OUI: ?18 escrll €d above. I(:T Flggre %]( ), S'nct'::the cache line block, we need to multiply the relative child index
the 16 sub-trees at depth 4 can only accommodate depth one subgy the cache line with the size of each cache line and add it to
trees within the brst bvel() levels, we lay them out contiguously the starting address of that level of sub-trees.

in memory, from positions 15 to 30. For a qi :
. i given element key siz&J, the number of accessed cache
After having considered the P levels, each of theN, + 1) lines (and memory pages)psovably minimized by the hierarchi-

chlldrgn §l;}b-;reesdarel Iau; oué as de;crilzt_)ed atl)ove.Tg_hls IS TEPT€-¢a| tree structure. However, while performing a single search per
sented with the red colored sub-trees in Figure 1(c). This process is,, e the compute units still do not perform any computation while

carr_led out until trr:e prstp Ievels_of thle tree are re_arranﬁed and laid waiting for the memory requests teturn, therep under utilizing
outin memory (the top green triangle). We continue the same rear-y, comnute resource. In order to perform useful computation dur-
rangement with the sub-trees at the next level and terminate Whening the memory accesses, we advocate performintjiple search
a_II_the AL tree have been rearranged to th‘? appmp”ate,pOQUeriessimultaneously on a single core/thread. We use software
sitions. For e.g., Fig. 1(c) shows the rearranged binary tree, with
the nodes corresponding to the keys stored in the sorted list of (key, 4Assuming a depth adp for the bottom most page of the index tree. For a
smaller depth, replaate/ d; with d%/ d; for the last page, whe?is the
sub-tree depth for the last page.

3By depnition, tree witlonenode has a depth ohe
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Search Key =59

pipelining, and interleave the memory access and computation for Key value in the <

different queries. For example, while crossing cache line blocks, tree node M Use mask Lookup Table

we issue grefetchfor the next cache line block to be accessed (for  mask bit value: 5-3/ 1 \61 V?{L‘;st 00

a specibc query), and subsequently perform comparison operationsif keji‘ielyﬁ;/"'-l\ chid Inde)zé 0\ — 010

for the other query(ies). After performing the comparison for all 5 2 . -8

the remaining queries, we access the cache line (the same address / \ /\ /1\ /\

we issued prefetch for earlier). With adequate amount of gap, the D @ 5 G &L 11i -

cache line would have been brought into the cache by the prefetch, A /1\1 _ Lookup. CRle
Child Index = 3

thereby hiding memory latency. This process ensures complete
utilization of the compute unitsAlthough modern GPUs provide Figure 2: Example of SIMD(SSE) tree search and the lookup table.
large number of threads to hide the memory access latency, the re-
sultant memory access and instian dependencstill expose the the input tuples.
latency, which is overcome using our layout and software pipelin- (b) loading in the key : kes{ Tj key (ifj> N, keyt key).
ing schemes (Section 5.2). ©T K= key"ok++.

In order to minimize the incurred latency during search opera-
tion, we want to increasep (in order to reduce the number of TLB  This process is repeated till the complete tree is constructed (i.e.
misses) and increask (to reduce the number of accessed cache k = (29v-1)). The tree construction can be parallelized by dividing
|ineS). The Only way to increase both is to reduce the element SiZethe Output equa"y amongst the available cores, and each core com-
(E). For in-memory databases, the number of tuples is typically puting/writing the relevant part of the output. We exploit SIMD for
less than the range of 32-hit numberg32and hence the keys can step (a) by computing the index féfx (= 3) keys within the SIMD
be represented using 32 bits (4-byte) integers. We assume 4-bytgevel block simultaneously. We use appropriate SSE instructions
keys and 4-byte ridOs for algorithm description in the next section, and achieve around 2X SIMD Sca"ng as compared to the scalar
and provide algorithms for representing longer and variable length code. Steps (b) and (c) are still performed using scalar instructions.
keys using 4-bytes in Section 6. 32-bit keys also map wellto SIMD  For input sizes that bt in the LLC, tree construction is compute
on modern architectures (CPU and GPU), with native instruction bound’ with aroun®0 Op§ per e|er‘r|entY for a total construction

support for 32-bit elements in each SIMD lane. time of 20229 ops per core. FolN = 2M, the total time is around
40M cycles per core, assuming the CPU can execute 1 instruction
5. CPU SEARCH VS. GPU SEARCH per cycle. When the input is too large to bt into the LLC, the tree

We describe in detail the complete search algorithm on CPUs and construction needs to read data from memory, with the initial loads
GPUs We discuss various parameters used for our index tree layout€2ding complete cache lines but only extracting out the relevant
and the SIMDibed search code, along with a detailed analysis of 4 bytes. To compute the total bandwidth required, letOs start with

1
performance and efbciency comparison on the two architectures. the leaf nodes of . There are a total of ) leaf nodes. The
indices for the nodes would be the set of even indices 0, 2, and

5.1 CPU Implementation so on. Each cache line holds eight (key, rid) tuples of which four

Today®s CPUs like the Intel Core i7 have multiple cores, eachtUples have even indices. Hence populating four of the leaf nodes
with a 128-bit SIMD (SSE) computational unit. Each SSE instruc- ©f T requires reading one cache line, amounting £ bytes per
tion can operate simultaneously on four 32-bit data elemefits. node. For the level abov_e the Ieaf nodes, only two leaf nodes can
equals four bytes for this section. As far as exploiting SIMD is b€ populzated per cache line, leading/t(2 bytes per node. There
concerned, there are multiple ways to perform searches: are 2v) 2 such nodes. For all the remaining node$+{2-1), a

(a) Searchingnekey, and using the SSE instructions to speedup complete cgche line per node is read. S_ince there i_s no reuse_of
the search. the cache lines, the total amount of required bandwidth (analyti-

1 2 2

(b) Searchingwo keys, using two SIMD lanes per search. cally) would be £) 1L /4 + 2W) 2L /2 + (2W) '1)4 * (LI 2)2 _
(c) Searchindour keys, one per SIMD lane. bytes, equal t(SZ(ZdN) bytes for CPUs. Depending on the avail-

Both options (b) and (c) would requigathering elementsom able bandwidth, thi_s may be compute/bandwidth t_)ound. Assuming
different locations. Since modern CPUs do not support an efbcient 'éasonable bandwidt» (L.6-bytes/cycle/core), our index tree con-
implementation of gather, the overhead of implementing these in- Struction iscompute bound For N as large as 64M tuplesthe
structions using the current set of instructions subsumes any benebfun-time is around 1.2ition cycles (for a single core), which is
of using SIMD. Hence we choose option (a) for CPUs, andiget less than a 0.1 secondsn the Core i7. With such fast build times,
= 2 levels. The cache line size is 64 bytes, implyihg= 4 lev- we can support updates to the tuples by buffering the updates and
els. The page size used for our experimentation is 2MB=(19), processing them in a batch followed by a rebuild of the index tree.
although smaller pages (4KB; = 10) are also available. .

o 5.1.2 Traversing the Tree

5.1.1 Building the Tree Given a search keykeyq), we now describe our SIMD friendly

Given a sorted input of tupled( i& (1..V), each h_aving 4-byte tree traversal algorithm. For a range quetkeffq1, keyql), keyq
(key, rid)), we layout the index treel:() by collecting the keys ( keyqi. We begin by splattindgeyq into a vector register (i.e.,

, q q

from the relevant tuples and laying them out next to each other. We replicatingkeyq for each SIMD lane), denoted byid,q. We start
setdy =#ogz(N)$. In caselV is not a power of two, we still build the search by loading 3 elements from the start of the tree into the
the perfect binary tree, and assume keys for tuples at index greaterregister \{ree. At the start of a pageage_offsef 0.
than/V to be equal to the largest key (or largest possible number), Step 1:Viee ( sse_loadl + page_offsét
denoted as key We iterate over nodes of the tree to be created This is followed by the vector comparison of the two registers to
(using indexk initialized to 0). With current CPUs lacking gather  set a mask register.
support, we layout the tree by:
(a) computing the index (sgy of the next key to be loaded from 1 op implies 1 operation or 1 executed instruction.
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Vi
Ta: starting address of a tree

page_address: starting address offset of a particular page blocking sub-tree
page_offset: starting address offset of a particular cache line blocking sub-tree
cache_offset: starting address offset of a particular SIMD blocking sub-tree

*

__m128i xmm_key_q =_mm_loadl_ps (key_q);
/* xmm_key_q : vector register Vkeyq, Splat a search key (keyq) in Vkeyq */

for (i=0; i<number_of_accessed_pages_within_tree; i++) {
page_offset = 0;
page_address = Compute_page_address(child_offset);
for (j=0; j<number_of_accessed_cachelines_within_page; j++) {
/* Handle the first SIMD blocking sub-tree (=2 levels of the tree)*/

__m128i xmm_tree = _mm_loadu_ps (Ta + page_address + page_offset);
/* xmm_tree: vector register Viree. Load four tree nodes in Viree*/

__m128i xmm_mask = _mm_cmpgt_epi32 (xmm_key_g, xmm_tree));
/* xmm_mask: mask register Vmask. Set the mask register Vmask*/

index = _mm_movemask_ps (_mm_castsi128_ps(xmm_mask));
/* Convert mask register into index*/

child_index = LookUp[index];

/* Likewise, handle the second SIMD blocking sub-tree (=2 levels of the tree)*/
xmm_tree = _mm_loadu_ps (Ta + page_address + page_offset + Nk*child_index);
xmm_mask = _mm_cmpgt_epi32 (xmm_key_g, xmm_tree));

index = _mm_movemask_ps (_mm_castsi1l28_ps(xmm_mask));

cache_offset = child_index*4 + Lookup[index];

page_offset = page_offset*16 + cache_offset;

}
child_offset = child_offset*(2"dp) + page_offset;
}

/* child_offset is the offset into the input (Key, Rid) tuple (T) */
While (T[child_offset].key <= keq_q2)
child_offset++

Figure 3: SSE code snippet for index tree search.

Step 2: Vimask(  sse_greater(\yq, Viree)-

We then compute an integer value (termedeX from the mask
register:

Step 3:index( sse_index_generationfsy

Theindexis then looked up into hookuptable, that returns the lo-
cal child index¢hild_indey, and is used to compute the offset for
the next set of load.

Step 4: page_offsef page_offset Ny & ookup[indeX.

Sincedk = 2, there are two nodes on the last level of the SIMD
block, that have a total of four child nodes, with local ids of 0, 1, 2
and 3. There are eight possible values gk\, which is used in de-
ciding which of the four child nodes to traverse. Hence, the lookup
table has 2« (= 8) entries, with each entry returning a numier
[0..3]. Even using four-bytes per entry, this lookup table occupies

Node Index ¢--... > Common

¢- - Result of > ~— Ancestor

Node Indexj <7 regtcbme;ﬁéoon Index

1 gl 5 P
3 A 5 Lookup
/\ /N I Table
7 (8 (© 4o —>
i1

ABEDEES Y I JKkiMNO P
@) (b)
Figure 4: Example of GPU tree search and the lookup table.

compared to a scalar code, we resotie (= loga(Nk +1)) lev-
els simultaneously. Hence theoretically, a maximum of 2dx(F
speedup is possible (in terms of number of instructions). We brst
analyze the case where the index tree btsin the LLC. For each level
of the index tree, the scalar code is:

child_offset( 2&hild_offset + keyq > T [child_offset])

The above line of code performs 5 ops (load, compare, add,
multiply and store). In comparison, the SSE code requires simi-
lar number of instructions for two levels. However, our blocking
scheme introduces some overhead. For every 4 levels of execu-
tion, there are 2 ops (multiply-add for load address computation),
another 2 ops (multiply-add for cache_offset computation), and 2
ops for multiply-add (for page_offset computation), for a total of 6
ops for 4 levels. Thus the net number of ops per level of the SSE
code is around (((10+6)/4) = 4)pif a speedup of 1.25X (=5/4).
Since modern CPUs can execute multiple instructions simultane-
ously, the analytical speedup provides a high-level estimate of the
expected speedup. As far as tree sizes larger than the LLC are con-
cerned, for each cache line brought into memory, the total amount
of instructions executed is around 16 ops. The net bandwidth re-
quired would be 64/16 = 4 bytes/cycle (assuming IPC=1). Even
recent CPUs do not support such high bandwidths. Furthermore,
the computation will be bandwidth bound for the last few levels
of the tree, thereby making the actual SIMD benebt depend on the
achieved bandwidth.

5.1.3 Simultaneous Queries

For tree sizes larger than the LLC, the latency of accessing a
cache line I ) is the order of a few hundred cycles. The total
amount of ops per cache line is around 16. To remove the depen-
dency on latency, we execufe simultaneous queries, using the
software pipelining technique. The value $fs set to be equal to

less than one cache line, and is always cache resident during thegight for our experiments, since that covers up for the cache/TLB

traversal algorithm.

In Figure 2, we depict an example of our SSE tree traversal algo-

rithm. Consider the following scenario whéeyq equals 59 and
(keyq > Viree[0]), (keyq > Viree[1]) and keyq < Vired2]). In this

miss latency. In addition, for small tree sizes that btin the LLC, our
software pipelining scheme hides the latency caused by instruction
dependency. The search code scales near linearly with multiple
cores. The Core i7 supports the total of eight threads, with four

case, the lookup table should return 2 (the left child of the second cores and two SMT threads per each core. Therefore, we need a
node on the second level, shown in the brst red arrow in the bgure).total of 64 concurrent queriesto achieve peak throughput.

For this specibc examplesk(  [1, 1, 0] and hencendexwould

be 1(2) + 1(2') + 0(22) = 3. HencelLookug3] ( 2. The other
values in the lookup table are similarly blled up. Since the lookup
table returns 2child_indexfor the next SSE tree equals 2. Then,
we compare three nodes in the next SSE tree apdM [1, 1, 1],
implying the right child of the node storing the value 53, as shown
with the second red arrow in the Pgure.

We now continue with the load, compare, lookup and offset com-
putation till the end of the tree igached. After traversing through
the index structure, we get the index of the tuple that hakthest
keyless than or equal tkeyq. In case of range queries, we do a
linear scan of the tuples, till we Pnd the brst key greater kiegig,.

Analysis: Figure 3 delineates our SSE tree traversal code. As
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5.2 GPU Implementation

The NVIDIA GPU architecture consists of multiple shared mul-
tiprocessors (or SMs). The GTX 280 has 30 such SMs. GPUs
hide memory latency through multi-threading. Each GPU SM is
capable of having more multiple threads of execution (up to 32 on
the GTX 280) simultaneously active. Each such thread is called a
threadblockin CUDA [24].

Each GPU SM has multiple scalar processors that execute the
same instruction in parallel. In this work, we view them as SIMD
lanes. The GTX 280 has eight scalar processors per SM, and hence
an 8-element wide SIMD. However, the logical SIMD width of the
architecture is 32. Each GPU instruction works on 32 data ele-



ments (called @hread warp, which are executed in four cycles.
GPUs provide hardware support for gather/scatter instructions at a
half-warp granularity (16 lanes) [24], and hence we explored the
complete spectrum of exploiting SIMD:

(a) Searchin®2 keys, one per SIMD lanalf = 1).

(b) Searchingonekey, and exploiting the 32 element-wide SIMD
(dx =5).

Since the GPUs do not explicitlgxpose caches, the cache line
width (d.) was set to be same dg . This reduces the overhead

of computing the load address by the various SIMD lanes involved
in searching a specibc key. As far as the TLB size is concerned,
NVIDIA reveals no information of page size and the existence of
TLB in the ofpcial document. With various sizesdy, we did not

see any change in run-time. Hendg,is assigned equal iy, .

5.2.1 Building the Tree

Similar to the CPUs, we parallelize for the GPUs by dividing
the output pages equally amongst the available SMs. On each SM,
we run the scalar version of the tree creation algorithm on one of
the threads within a half-warp (16 lanes). Only that one thread

per half-warp executes the tree creation code, and computes the in-

dex, and updates the output page. This amounts to running two
instances of tree creation per warp, with effective SIMD width of
two. Running more than two instances within the same warp leads
to gather (to read keys from multiple tuples in the SIMD opera-
tion), andscatter(to store the keys to different pages within the
SIMD operation) from/to the global memory. In our experiments,
we measured a slow down in run-time by enabling more than two
threads per warp. We execugightblocks on the same SM to hide
the instruction/memory access latency. We assign one warp per
block for a total of 30 SM&8 (=240) warps.

As far as the run-time is concerned, the number of ops per tree
element is similar to the CPU @0 ops), therefore reducing to 20/2
=10 SIMD ops per element. Each of the executed warp takes 4 cy-
cles of execution per warp. Hence, total number of cycles is equal
to 108429) cycles ( =40&% cycles) per SM. Since GPUs pro-
vide a very high memory bandwidth, our tree creationdmpute
bound. For N as large as 64 million tuplesthe run-time is around
2.6 billion cycles, which idess than 0.07 secondsn GTX 280.

5.2.2 Traversing the Tree

dx equal to 1 is a straightforward implementation, with each
SIMD lane performing an independent search, and each memory
access amounting to gather operations. Any valugkofess than
4 leads to a gather operation within the half-warp, and the search
implementation is latency bound. Hence we chodge= 4, since

/* In the GPU code, we process two independent queries  within a warp*/
simd_lane = threadld.x %16; // 16 threads are devoted for each search query
query_id = threadld.x / 16;  // query_id, either 0 or 1

ancestor = Common_Ancester_Array [simd_lane];

base_index = 2*(simd_lane) b 13;

_ shared__ int child_index [2]; // store the child index for two queries
__shared__ int shared_gt [32];

for (j=0; j<number_of_accessed_cachelines_within_page; j++) {
/* Handle the SIMD blocking sub-tree (=4 levels of the tree)*/
page_address = (2°(4%)-1) + page_offset*15; // consume 2 ops

int v_node = (Td + page_address + simd_lane))); // consume 4 ops
/* This is actually SIMD load. Our SIMD level blocking enables this instruction to be
loading 16 consecutive values as opposed to loading 16 non-consecutive values */

int gt = (keyq > v_node);
shared_gt[threadldx.x] = gt;
__syncthreads() ;

// consume 2 ops
/I consume 2 ops
/I consume 2 ops

next_gt = shared_gt[threadldx.x + 1];
if (threadldx.x ==7) {
child_index[query_id] = 0;

/I consume 2 ops
/I consume 2 ops
/I consume 2 ops

}
if (threadldx.x >=7) {
if (gt & next_gt) {
/*resj=18&& resj;; =0*
child_index[query_id] = base_index + shared_gt[ancestor];
Il consume 5 ops
}

__syncthreads() ; /I consume 2 ops
page_offset = page_offset*16 + child_index[query_id]; // consume 3 ops

I/l consume 2 ops
I/l consume 2 ops

}
child_offset = page_offset;

/* child_offset is the offset into the input (Key, Rid) tuple (T) */
While (T[child_offset].key <= keq_q2)
child_offset++

Figure 5: GPU code snippet for index tree search.

reg = 1,index( |.We pre-compute the common ancestor nhode
for each of the leaf nodes (with its successor node) into a lookup
table, and load it into thehared buffeat the start of the algorithm.
Figure 4(b) shows this lookup table for our specibc example, and
similar tables can be built for other valuesd)f. The total size of

the lookup table igVx (=15 for our example).

Figure 5 shows the CUDA code for GPU search. __syncthreads()
is required to ensure that tisbared buffeis updated before being
accessed in the subsequent line of code (for inter-lane communi-
cation). child_indexis also stored in thehared bufferso that the
relevant SIMD threads can access it for subsequent loads. This re-
quires another __syncthreads() instruction. We also show the num-
ber of ops for each line of code in the bgure. The total number of
executed ops is 32. Sinck = 4, the average number of executed
ops per level is 8 ops for two queries within the 32-wide SIMD.

5.2.3 Simultaneous Queries

it avoids gather operations, and tree node elements are fetched us- Although the GPU architecture is designed to hide latency, our
ing a load operation. Since GPUs have a logical SIMD width of implementation was still not completely compute bound. There-
32, we issugwo independentjueries per warp, each witly = fore, we implemented our software pipelining technique by varying
4. Although the tree traversal code is similar to the CPUs, the cur- S from 1 to 2. This further reduced the latency, and our resultant
rent GPUs do not expose explicit masks and mask manipulation run-time were within 5%910% of the compute bound timings.
instructions. Hence Steps 2 and 3 (in Section 5.1.2) are modibed In order to exploit the GPU architecture, we execute independent
to compute the local child index. We exploit the availasitared queries on each SM. In order to hide the latency, we issue one warp
bufferin the GTX 280 to facilitate inter-lane computation. per block, with eight blocks per SM, for a total of 240 blocks on
After comparing the key with the tree node element, each of the the GTX 280 architecture. Since we execute 2 queries in SIMD,
Nk SIMD lanes stores the result of the comparisas (= 0/1) in and S queries per warp, a total of 48@jueries are required. With
a pre-allocated space. Consider fightleaf nodes in Figure 4(a) S being equal to 2, we operate the GPU at full throttle vé80
(assuméVk = 15). We need to bPnd the largest index (Baypuch concurrent queries
thatres; = 1 andres;j+ 1 = 0. For the Pgurg,= 10. Hence the child
node is eitheHor | . The result depends on the comparison result
of their common ancestor (nogle In caseres = 0, keyq is less
thanthe key stored at nogeand hence the node belongs to its left
sub-tree, thereby settirigdex( H (shown in Figure 4). In case

5.3 Performance Evaluation

We now evaluate the performance of FAST on an quad-core Core
i7 CPU and an GTX 280 GPU. Peak Bops (computed as frequency
acore countaSIMD width), peak bandwidth, and total frequency
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[ Platform ]| Peak GFlops| Peak BW] Total Frequency| 300

4
Core i7 103.0 30 12.8 250 AN
GTX 280 933.3 141.7 39 200 K\

Table 1: Peak compute (GFlops), bandwidth (GB/sec), and total fre-
quency (Cores * GHz) on the Core i7 and the GTX 280.
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Figure 7: Comparison between the CPU search and the GPU search.
OCPU-BWO shows the throughput projection when CPU search be-
comes memory bandwidth bound

Normalized Search Time

Finally, the software pipelining technique with prefetch relaxes the
impact of instruction dependency and further hides cache misses.
Py GPU Our pbnal search performance4s8X faster for large trees and
2.5X faster for small trees than the best reported numbers [28]. As
shown in Figure 6, ouscalar performance with page and cache line
blocking outperformsthe best reporte&IMD search by around
1.6X. This emphasizes the fact that SIMD is only benepcial once
the search algorithm is compute bound, and not bound by various
(core countfrequency) of the two platforms are shown in Table 1. other architectural latencies. Applications that are latency bound
We generate 32-bit (key, rid) tuples, with both keys and rids gen- do not exploit the additional compute resources provided by SIMD
erated randomly. The tuples are sorted based on the key value anghstructions. Also note that our comparison numbers are based on a
we vary the number of tuples from 64K to 64MThe search keys  single-thread execution (for fair comparison with the best reported
are also 32-bit wide, and generated uniformly at random. Random CPU number). When we execute independent search queries on
search keys exercise the worst case for index tree search with nomuitiple cores, we achieveear-linearspeedup (3.9X on 4-cores).
coherence between tree traversals of subsequent queries. The default GPU search (Fig. 6) executes one independent binary
We Prst show the impact of various architecture techniques on search per SIMD lane, for a tdtaf 32 searches for SIMD execu-
search performance for both CPUs and GPUs and compare searcfion. Unlike CPU search, GPU search is less sensitive to blocking
performance with the best reported number on each architecture for latency. We do not report the number for cache line blocking
Then, we compare the throughput of CPU search and GPU searctsince the cache line size is not disclosed. While the default GPU
and analyze the performance bottlenecks for each architecture.  search suffers from gathering 32 tree elements, SIMD blocking al-
. oL lows reading data from contiguous memory locations thus remov-
5.3.1 Impact of Various Optimizations ing the overhead of gather. Since the overhead of gather is more sig-
Figure 6 shows the normalized search time, measured in cyclesniPcant for large trees, our GPU search obtains 1.7X performance
per query on CPUs and GPUs by applying optimization techniques improvement for large trees, and 1.4X improvement for small trees
one by one. We brst show the default search when no optimiza- with SIMD blocking. Our GPU implementation is compute bound.
tion technique is applied and a simple binary search is used. Then,
we incrementally apply page blocking, cache line blocking, SIMD  ©-3-2  CPU search VS. GPU search
blocking, and software pipelining with prefetch. The label of O+SW  We compare the performance of search optimized for CPU and
PipeliningO shows the bnal relative search time when all optimiza- GPU architectures. Figure 7 shows the throughput of search with
tion techniques are applied. We report our timings on the two ex- various tree sizes from 64K keys to 64M keys. When the tree pts
treme cases D small trees (with 64K keys) and large trees (with 64Min the LLC, CPUs outperform GPUs by around 2X. This result
keys). The relative performance for intermediate tree sizes fall in matches well with analytically computed performance difference.
between the two analyzed cases, and are not reported. As described in the previous subsections, our optimized search re-
For CPU search, the benebt of each architecture technique isquires 4 ops per level per query for both CPUs and GPUs. Since
more noticeable for large trees than small trees because large tree§&PUs take 4 cycles per op, they consume 4X more cycles per op
are more latency bound. First, we observe that search gets 33%as compared to the CPU. On the other hand, GPUs have 3X more
faster with page blocking, which translates to around 1.5X speedup total frequency than CPUs (Table 1). On small trees, CPUs are not
in throughput. Adding cache line blocking on top of page blocking bound by memory latency and can operate on the maximum in-
results in an overall speedup of 2.2X. This reduction of search time struction thoughput rate. Ulike GPUs, CPUs can issue multiple
comes from reducing the average TLB misses and LLC misses sig-instructions per cycle and we observe an IPC of around 1.5. There-
nibcantly B especially when traversing the lower levels of the tree. fore, the total throughout ratio evaluates to around (1.5*#/3X
However, page blocking and cache line blocking do not help small in the favor of CPUs.
trees because there are no TLB and cache misses in the brst place; As the tree size grows, CPUs suffer from TLB/LLC misses and
in fact, cache line blocking results in a slight increase of instruc- get lower instruction throughput rate. The dotted line, labeled OCPU-
tions with extra address computations. Once the impact of latency BWO shows the throughput projection when CPU search becomes
is reduced, SIMD blocking exploits data-level parallelism and pro- memory bandwidth bound. This projection shows that CPUs are
vides an additional 20% D 30% gain for both small and large trees.compute bound on small trees and become closer to bandwidth
bound on large trees. GPUs provide 4.6X higher memory band-
664M is the max. number of tuples that Pt in GTX 280 memory of 1GB.  width than CPUs and are far from bandwidth bound. In the next

large tree small tree large tree small tree

Figure 6: Normalized search time with various architectural opti-
mization techniques (lower is faster). The fastest reported performance
on CPUs [28] and GPUs [2] is also shown (for comparison).
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Throughput (million queries per sec) 5.3.4 Limited Search Queries
Small Tree (64K keys)| Large Tree (16M keys I
Research on search generally assumes the availability of a large

CPU 280 60 . ) .
GPU 150 100 number of queries. This may be the case either when a large num-
MICA 667 183 ber of users concurrently submit searches or a database optimizer

chooses multiple index probes for a join operation. However, in
Table 2: Measured performance comparison across three different some cases, there are limited number of concurrent searches that
platforms ® CPU, GPU, and MICA. are available to schedule. In addition, response time may become
more important than throughput when search queries cannot be
section, we show how to further improve CPU search performance buffered beyond some threshold of response time. To operate on
by easing bandwidth bottleneck with compression techniques. the maximum throughput, our CPU search requires 64 concurrent
Recent work [21] has shown that GPUs can improve search per-queries to be available while our GPU search requires 960 concur-
formance by an order of magnitude over CPUs and combining Fig. 6rent queries once the overheads of thread spawning and instruction
and 7 conPrms that unoptimized GPU search outperforms unop-cache miss have been amortized over a few thousand queries.
timized CPU search by 8X for large trees. However, proper ar-
chitecture optimizations reduced the gap and CPUs are only 1.7X6 COMPRESSING KEYS
slower on large trees, and in fact 2X faster on smaller trees. Note ~°
that GPUs provide much higher compute Rops and bandwidth (Ta-
ble 1). Thus optimized CPU searchnsich bettethan optimized
GPU search in terms @frchitecture efpciency

In the previous section, we presented run-times with key &e (
equal to 4 bytes. For some databases, the keys can be much largerin
length, and also vary in length with the tuples. The larger the key
size in the index tree, the smaller the number of levels per cache
5.3.3 Search on MICA line and per memory page, leading to more cache lines and pages
being read from main memory, and increased bandwidth/latency
requirements per query. With the total number of tuples being less
than the range of numbers represented by 4 bytes, it is possible
theoretically) to map the variable length keys to a bxed length of 4

We study how FAST would perform on the Intel Many-Core
Architecture Platform (MICA), a Larrabee [29] based silicon plat-
form for many-core research and software developrémitrrabee
is an x86-based many-core processor architecture based on smal . ) . .
in-order cores that uniquely combines full programmability of to- ytes (for use in the index tree), and achieve maximum throughput.

~ : : In this section, we use compression techniques to ease mem-
g%%se?ﬁgg ?a%(ii?j?ﬁ Eang%:gzge;tlggd\l:rts é%rap:rtshti?ergﬁzg%ry bandwidth bottleneck and obtain furthgr speedup fo_r inde>§ tree
Each core is a general-purpose processor, which has a scalar uni?eig‘:h' Note that we focus on compressing the keys in the index
based on the Pentium processor design, as well as a vector unit tha ee for CPUs. Since CPU search is memory bandwidth bound
supports 16 32-bit Roat or integer operations per clock. Larrabee or last few levels of large trees_, compressing the _keys reduces
has two levels of cache: low latency 32KB L1 data cache and larger the ”“”.‘bef of acce_ssed <_:ache lines, thereby reducing the latency
globally coherent L2 cache that is partitioned among the cores. {bandW|dth, translating to improved perfo_rmanc_e. The GPU search
Each core has a 256KB patrtitioned L2 cache. To further hide la- is compute bound for 4-byte keys, a_nd will continue to be compute
tency, each core is augmented with 4-way multi-threading. bound for larger keys, .W'th proportional decre_ase_ln thrqughput.
Since Larrabee features a 16-wide SIMD, wedset= 4 levels, AI_though the compression scheme developed in tr_us sectlon_ is ap-
enabling sub-tree traversal of four levels with SIMD operations. plicable to GPUs toq, we focus on CPUs _and provide analysis and
Unlike GPUs, Larrabee SIMD operation supports inter-lane com- results for the same in the rest of the section.
putation. Therefore, SIMD tree traversal code is similar to SSE tree ; i
traversal code (Figure 3). The only difference is tgt= 4 lev- 6.1 Hand“ng Variable Length Keys
els is used while SSE hatg = 2 levels and no separate cache line h ) i )
blocking is necessary since we setis assigned equal i . maps variable input Iength Qata to an approprlat_e_bxed length Wlth
To compare search throughput with CPU/GPU search, we mea-Small number of false positives, and incurs negllgll_ale construction
sure the performance on the MICA platform for small trees (with 2nd decompression overhead. Our scheme exploits SIMD for fast
64K keys) and large trees (with 16M keys). Table 2 shows search COmPression and supports order-preserving compression, leading
throughput on three different platforms B CPU, GPU, and MICA. [0 Signibcant reduction in run-time for large keys.
As shown in the table, Larrabee takes the best of both architectures ; ;
b a large cache in CPUs and high compute/bandwidth in GPUs. 6.1.1 Compression AIgOI’I'Fhm .
For small trees, Larrabee is able to store the entire tree within L2 We compute a Pxed lengttEg bits) partial key pkey;) for a
cache, and is therefore compute bound. Compared to CPU anddiven key key;). In order to support range queries, it is imperative
GPU, search on the MICA platform obtains a speed up of 2.4X and 0 preserve the relative order of the keys, i.ekéy; " keyy), then
4.4X respectively. The speedup numbers over CPUs are in line with (Pkeyj " pkeyy). The cases whergpkey; = pkeyy) but (key;
the peak computational power of these devices, after accounting< Keyk) are still admissible, but constitute the setfalse posi-
for the fact that search can only obtain a speedup «fKggusing tives and should be mlnlmal to reduce the overhead of _redunglant
K -wide SIMD. The high speedup over GPUs comes from the inef- key comparisons during the search. Although there exist various
bciency of performing horizontal SIMD operations on GPUs. For hashing schemes to map the keys to a bxed length [6], the order
large trees (16M entries D depth 24), the Prst 16 levels are cache®reserving hash functions require &log, V) storage and com-
in L2 and hence the brst 16-level traversal is compute bound while Pute time [14]. However, we need to compute and evaluate such
the remaining 8-level traversal is bandwidth bound. We observe a functions in constant (and small) time.

speedup of 3X and 1.8X over CPUs and GPUs, respectively. We extendthe prePx compression scheme [5] to obtarder
preservingpartial keys. These schemes compute a contiguous com-
Al results reported in this section are based on IntelOs internal research
conbgurations of the Intel Many-GorArchitecture Platform (MICA), 8The original tuple data may be be im#dently compressed using other
which is designed by Intel for research and software development. techniques [1] and used in conjunction with our scheme.

We brst present computationally simplEmpressioscheme that
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keyo [ 70000 | 7010 ] was —> 6 195 22 12
8ecs
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Figure 8: Example of extracting 8-bit partial keys in bve keys. Figure 9: Relative increase in computation with respect to various al-

phabet sizes 26"°PY) per byte. For example, 52 means that we generate

mon prebx of the set of keys, and store the subsequent part of thera'ndom keys for each byte among 52 values.

keys as the partial key. Instead, we compute a prebx such that th
bits at which the keys differ constitute the partial key.

Let K represent the list of keys. We debne a granularity factor
(G), a number between 1 to 32. The partial key for all the keys is
initialized to 0. We start by extracting and comparing the st
bits from all the keys. In case all the keys have the sétsits,
we consider the nexb bits, and repeat the process. In case they
are different, we append theggbits to the partial key computed

so far. We repreat this process and keep appending the €t of consists of two 4-bit elementsB¢ 4 and B3 o). ConsiderBy 4.

bits until aEp, bit partial key is obtained. Note that by construction, I chosen by the mask register, it can either end up as the 4 most

the prebx bits not_appended to the partial key so far are the Samesignichant bits in a certain byte of the output or in the 4 least signif-
for all the keys. Figure 8 shows an example for computing an 8-

bit partial key for Pve keys witl§ = 4. Note that our scheme is a icant bits of one of the bytes. Similar observation holdsBer.

lizati f N th bx B trach Each of these 4-bit values within a byte can be 0 padded by 4 bits
generalization of computing theé common prebx © we extracha (at left or right) to create four 8-bit values: namels(y0000),
contiguous common prepwith the discarded intermediafs, bit (000083 o), (B7 40000) and (000®; 4). We create four tem-
positions forming the partial key. Our scheme is order preserving ey y ’

. : 0 s ) porary registers for ), where each byte has been transformed as
since we start Wlth the most S|gn|_bcant bit. It is indeed possible to described. We can now permute each of the four registers (using
get the same partial key for two different keys.

. ] ) . the appropriate control registers), and bitwmisethe result to ob-
Setting the value ofG: Databas_es storing variable length keys tain the desired result. Thus, the costfartial keycomputation is
usually store low entropy values in each byte of the key. For ex-

- . 4 ops (for creating the temporary registers), 4 ops for permute, and
ample, keys representing the telephone numbers consist of only ten4 foF:r o(ring the resgult, for a?otal gf ﬁgE/ 16$)0ps ;E)er ke;? Includ-

unique values in each byte. Similarly the name/address/url has theing the cost to compute thEmask the total cost for compression is

Lir;?:eer%fe?jlp;?sztf?egstg dﬁt’fj{y&ﬁgg&g%ggrf;r ("S ;I?rr?aller 15#E/ 16% ops. For a 512MB tree structure with 16-byte keys, our
the value ofG, the higher the chances of forming partial keys with compression algorithm takes only 0.05 seconds on Core i7.

few false positives. (b) the larger the value@fthe lower the cost .
of computing the partial key from the original key. Furthermore, 6.1.2 Building the Compressed Tree

too small aG may require high cost of bit manipulation functions, We compute the partial keys for each page separately to increase
thereby increasing the overhead of compressing/decompressing théhe probability of forming effective partial keys with low false pos-
keys. We choosé = 4 bits, which provide the right balance be- itives. As we traverse down the tree, it is important to have few (if

e\/Ki. This consists of 32 4-bit chunks, with a 32-pihask pmask

= 1 implies the™ chunk needs to be appended with the previously
set 4-bit chunk. SSE provides for a general permute instruction
(_mm_shuff3e_eip8) that permutes the 16 1-byte values to any loca-
tion within the register (using a control register as the second argu-
ment). However, no such instruction exists at 4-bit granularity. We
however reduce our problem to permuting 8-bit data elements to
achieve fast partial key computation. Each byte Bay) of data

tween the two factors described above. any) false positives towards the top of the tree, since that increases
Compression Cost:We exploit SSE instructions by loading 128-  the number of redundant searches expontentially. For example, say
bits at a time for each key. We maintain a registessVhitialized there are two leaf nodes (out of the Prst page) with the same par-
to 0. We start by loading the brst 128-bitskqf into register \o. tial key, and the actual search would have led through the second
For each ke, we load the relevant 128-bits (intog\j and com- key. Since we only store the partial keys, the actual search leads
pute the bitwise exclusive-or operationyy=_mm_xor_ps(¥o, through the Prst of these matches, and we traverse down that sub-
Vki). We then bitwiseor the result with the Vs register, Ves = tree and end up on a tuple that {9 9) tuples to the left of the
_mm_or_ps(Yor, Vres). After iterating over all the keys, we an-  actual match B leading to large slowdowns. Although Bohannon et
alyze the Vs register by considering bits at a time. If theG al. [8] propose storing links to the actual keys, this leads to further

bits are all 0, then the result of all exclusive-or operations was 0, TLB/LLC misses. Instead, we solve the problem by computing an

and hence all the keys have the relevénbits the same. In case  Ep that leads to less than 0.01% false positives for the keys in the

any of the bits is 1, then that relevant chunk becomes part of the brst page. We start with, = 32 bits, and compute the partial keys,

partial key. We maintain a mask (termedpmask that stores a 0 and continue doubling, until our criterion for false positives is

or 1 for eachG hit. We iterate over the remaining key (16-bytes satisbed. In practice, witk, = 128 bits (16-bytes), we saw no

at a time) to compute the bits contributing towards the partial key. false postives for the brst page of the tree @ 100).

As far as the total cost is concerned, we require 3 ops for every 16  For all subsequent pages, we use partial keys of lerfgghr(32

bytes D for a total of 8=/ 16$ ops (in the worst case). For 16-byte  bits). The keys are compressed in the same fashion and each page

keys, this amounts to only 3 ops, ah@1 ops per element for as  stores thegmaskthat enables in fast extraction of the partial key.

long as 100-byte keys. All the keys now needpkedinto their Since the time taken for building the index tree is around 20 ops

respective partial keys with the sapeask per key (Section 5.1.1), the total time for buildiogmpressed index
Consider the prst 16-bytes of the key, loaded into the register treeincreases to (20 + ¥&/ 16%) ops per key. The compressed tree
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Figure 10 shows the relative throughput with varying key sizes
(and bxed entropy per byte: Igd0) bits). The number of keys
for each case is varied so that the total tree size of the uncom-
pressed keys is 1GB. All numbers are normalized to the through-

1
0.8
0.6

Relative Throughput

04 put achieved using 4-byte keys. Without our compression scheme,

02 the througput reduces to around 50% for 16-byte keys, and as low

0 as 30% and 18% for key sizes 64 and 128 bytes respectively. This

4 8 16 32 64 1 is due to the reduced effectiveness of cache lines read from main

Key Size (Byte) memory, and therefore increase in the latency/bandwidth. In con-

Figure 10: Throughput comparison between no compression and trast, our compression scheme utlizes cache lines more effectively
compression with key size from 4 to 128 bytes. by choosing 4-byte partial keys. The throughput drops marginally

- to around 80% for 16-byte keys (drop is due to the increase in cost
construction is still computbound, and only around 75% slower  for comparing 16-byte keys in the brst page (Section 6.1.3)) and
than the uncompressed case (fot 16). varies between 70%-80% for key sizes varying between 16 and

6.1.3 Traversing the Compressed Tree 128 bytes. The overall run-time speedup is around 1.5X for 16-

During the tree traversal, we do not decompress the stored partialbyte keys, and increases to around 6X for 128-byte keys.

keys for comparsion. Instead we comprksgg (the query key) for 6.2 Compressing Integer Keys

each new page, and compare it with the partial keys, which enables ; . ) )

search on compressed tuples. The cost of compressing the query In t_he previous section, we described our algorithm for com-

key is around 125/ 16% opsper page The key length is a mul-  Pressing large variable length keys. Apart from the Prst page, we
tiple of 16 bytes for the Prst page, and 4 bytes for all subsequent store 4-byte partial keys for all other pages. Although the partial

page accesses. For Steps 2 and 3 of the traversal algorithm (Seckeys within each page are sorted, there does not exist a lot of co-

tion 5.1.2) on the Prst page, we need to compare in multiples of herence betwe_e_n the 32-bit data elements D as they are cqmputed
16-byte keys and generate the appropriate index. We implementfrom Ionger_ original I_<eys. However, for cases where the original
16-byte key comparison in SSE using the native 8-byte comparison K€Y length is small (integer keys), there is coherence in the data
instruction (_mm_cmpgt_epi64), and use the corresponding mask-that can be expl_0|te_d, and_the key_s further _compressed. This leads
to-index generation instruction (_mm_movemask_pd) to generateto fu_rther rec_iuctlon in run-tlmeDsmc_e run-time for the last f_ew lev-
index into a lookup table. The total cost of tree traversal for the €IS in trees is dependent on the available memory bandwidth. We

prst page increases to around 10 ops per level. For all subsequenffoW describe a light-weight compression scheme for such integer
pages, it is 4 ops per level (similar to analysis in Section 5.1). keys, widely used as primary keys for OLAP database tables.

As far as the bandwidth requirements are concerned, for tree -
sizes larger than the LLC, we now access one cache linfotor 6.2.1 Building Compressed Trees
levels In comparison, folE = 16, we would have accessed one ~ We adopt the commonly used Pxed-length delta based compres-
cache line for 2 levels, and hence the bandwidth requirement is re-sion scheme. For each page, we bPnd the minimkmJ and
duced by* 2X by storing the order-preserving partial keys. For maximum key Kmay, and computé (= #log2(KmaxKmint+1)$) D
E + 32, the bandwidth reduction is 4X and beyond. This translates the number of bits required to store the difference (termet gs

to signibcant speedups in run-time over using long(er) keys. between the key value arhyin. For each compressed page, we
) also storeKmin and! (using 32-bits each). Since each page may
6.1.4 Performance Evaluation use different number of bits, we need an external Index Table, that

We implemented our compression algorithm on keys generated stores the offset address of each page using 4-bytes. We use SSE
with varying entropy per byte, chosen from a set of 1 value (1- to speed up computation &mnin, ! and the Index Table. To com-
bit) to 128 values (7-bits), including cases like 10 (numeral keys) pute the minimum value, we use the instruction (_mm_min_epi32),
and 52 (range of alphabets). The key size varied from 4 to 128 and compute a vector of minimum values after iterating over all the
bytes. The varying entropy per byte (especially low entropy) is the keys. The actual minimum value is computed by computing the
most challenging case for effective partial key computation. The minimum of the four Pnal values in the SSE register. The over-
distribution of the value within each byte does not affect the results, all minimum value computation takes around 2 ops for 4 elements.
and we report data for values chosen uniformly at random (within Maximum value is computed similarly, and then delta for each key
the appropriate entropy). We also report results for 15-byte keys onis computed with a total of around 2 ops per key. Packing!the
phone number data collected fradtUSTOMERable in TPC-H. least signibcant bits from each key is performed using scalar code,
In Figure 9, we compare our compression scheme, non-contiguou@l’ a total of around 6 ops per key. The total tree construction time
common prebx (NCCP) with the previous scheme, contiguous com-is increasedoy around 30% over uncompressed tree building.
mon prebx (CCP) and report the relative increase in computaton .
for searching 16-byte keys with various entropies. The increase in 6.2.2 Traversing Compressed Trees
computation is an indicative of the number of false positives, which ~ We readKm, and! at the start of the compressed page, and
increases the amount of redundant work done, and thereby increaseompute keyq-Kmin) for the query key, termed deyq, . We di-
ing the run-time. A value of 1 implero false positives Even rectly comparekeyq, with the compressed key values to compute
for very low entropy (choices per kéy 4), we perform relatively the child index (Step 2 of the tree traversal in Section 5.1.2). The
low extra computation, with total work less than 1.9X as compared comparison is done using a SSE friendly implementation [30]. The
to no false positives. For all other entropies, we measure less thanresultant computational time only increases by 2 ops per level. On
5% excess work, signifying the effectiveness of our low cost partial the other hand, our compression scheme increases the number of
key computation. A similar overhead of around 5.2% is obesrved levels in each cache line, and reduces the number of cache lines.
for the TPC-H data using our scheme, with the competing schemeFor example, for pages with 4X compression or maré (8), we
reporting around 12X increase. can now btdx (+ 6) levels, as opposed to 4 levels without com-
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Figure 11: Throughput VS. Response time with various techniques.

pression. Since the performance for the uncompressed tree was[2]
bandwidth bound for the last few levels, this reduces the number of
cache lines accessed by around 1.5X, which directly translates to
run-time reduction. As far as the compression ratio is concerned, (4
we achieve 2-4X compression on the randomly generated integer

datasets, and the run-time reduces by 15%-20% as compared to thel5]
run-time without using our compression technique.

(3]

6]
7. THROUGHPUT VS. RESPONSE TIME Yl
In this section, we compareur different techniques for search-  [g)

ing queries based on the user/application response time. This varies

from stringent response timé ( ms) to more tolerant{ 50 ms). [0
(a) Unbuffered Scheme: FAST with uncompressed index trees [10]
(b) Unbuffered-Compressed Scheme: FAST with compressed

index trees [11]
(c) Buffered Scheme: We implemented a variant of the buffered
search algorithm [32]. We allocate a buffer for all the children (12]
nodes of the leaves of the sub-tree in the Prst pag¥ Bufers [13

in total. Instead of searching a query through the complete tree, [14]
we traverse only the brst page of the tree, and temporarily store
the query in the appropriate buffer. As more queries are processed[*°!
each of these buffers start blling up. We trigger search for all the (16]
queries within a buffesimultaneouslyeither when a pre-debned
threshold ofbatch of input queriehiave been stored at these in-
termediate buffers, or wheany of the buffers is Plled up. This
technique eliminates TLB misses that would have incurred with (18]
the unbuffered scheme (from one per query to one per group), andjig
also exploit the caches better due to the coherence in the cache line
accesses amongst the queries. This reduces the latency/bandwidtZ0]
requirements, thereby speeding up the run-time. [21]
(d) Sort-Based Schemeinstead of traversing through the search
tree, we sort thénput batch of queriesand perform a linear pass  [22]
of the input tuples and the sorted queries, comparing the individ-
ual queries and tuple keys and recording matches. The queries aré?3]
sorted using an efbcient implementation of merge-sort [11]. Al- 24]
though sort-based scheme performs a scan through all the input tups)
ples, it provides better throughput when thput batchof queries
is relatively large in number. For (c) and (d), tlesponse timés
debPned as the time taken to process all queries in the input batch.
In Figure 11, we plot the throughput w.r.t. obtained response
time. Both Unbuffered and Unbuffered-compressed scheme re-[2g]
quire only 64 simultaneous queries to achieve peak throughput,
which corresponds t8 1 ms of response time. The throughput
for compressed index trees is around 20% greater than the traversqgo]
in the uncompressed trees (Section 6.2). The buffered scheme pro-
vides a peak throughput of around 5% larger than the compressed31]
case, but requires a much lardeatch (* 640K) of input queries,
that corresponds to response time of around 20-30 ms. Sort-base(ﬁ3 2l
scheme also has a larger throughput, but exceeds our implementagsg;
tion for a response time of 33ms or larger wittRM queries.

[17]

[26]

N
|
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élzz - We present FAST, an architecture sensitive layout of the index

8 S tree. We report fastest search performance on both CPUs and GPUs,
%’ 60 4 with 5X and 1.7X faster than best reported numbers on the same
S 40— 7 platform. We also support efbcient bulk updates by rebuilding in-

3 20 p4 dex trees in less than 0.1 seconds for datasets as large as 64M keys.
® F4 With future trend of limited memory bandwidth, FAST naturally

E 0 o 0 2 - 2 0 integrates compression techniques with support for variable length

keys and allows fast SIMD tree search on compressed index keys.
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