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ABSTRACT
Guaranteed I/O performance is needed for a variety of applica-
tions ranging from real-time data collection to desktop multime-
dia to large-scale scientific simulations. Reservations on through-
put, the standard measure of disk performance, fail to effectively
manage disk performance due to the orders of magnitude differ-
ence between best-, average-, and worst-case response times, al-
lowing reservation of less than 0.01% of the achievable bandwidth.
We show that by reserving disk resources in terms of utilization
it is possible to create a disk scheduler that supports reservation
of nearly 100% of the disk resources, provides arbitrarily hard or
soft guarantees depending upon application needs, and yields effi-
ciency as good or better than best-effort disk schedulers tuned for
performance. We present the architecture of our scheduler, prove
the correctness of its algorithms, and provide results demonstrating
its effectiveness.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—secondary stor-
age; D.4 [Operating Systems]: Performance

General Terms
Algorithms, Design, Management, Performance, Theory

1. INTRODUCTION
As general-purpose computer systems become increasingly pow-

erful, they are called upon to perform tasks traditionally reserved
for special-purpose systems. These include tasks requiring hard
and soft timeliness guarantees in applications such as multimedia,
real-time data acquisition and control, real-time image processing,
and scientific visualization. At the same time, real-time embedded
systems are increasingly called upon to manage more data than can
fit in RAM, as in a GPS mapping application. Disk I/O, generally
considered too slow and too unpredictable to be managed as part
of traditional real-time processing, is an essential aspect of many
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of these applications, which may require guarantees from a single
disk or a large distributed storage system.

Like a CPU scheduler, the basic goal of a real-time disk I/O
scheduler is to provide timeliness guarantees. As with CPU schedul-
ing, we want to support applications with arbitrary performance
requirements and reservation granularities (periods). As storage
systems, especially large storage systems, may concurrently sup-
port a wide range of applications, the need to support a wide range
of timeliness requirements also emerges, including hard real-time,
soft real-time, and best-effort. The mechanical nature of disks adds
an additional set of requirements. Sequential I/O accesses experi-
ence orders of magnitude lower latencies than random accesses and
good request scheduling can provide a corresponding increase in
I/O performance by reordering requests to increase sequentiality.
Thus a real-time I/O scheduler must provide not just guaranteed
performance, but also good performance, as close as possible to
that provided by a general-purpose I/O scheduler. It must also iso-
late request streams so that the I/O behavior of one request stream
does not cause another to violate its requirements.

General-purpose applications (and application developers) tend
to express I/O performance requirements in terms of throughput,
i.e., Kb/second, MB/minute, transactions/hour, etc. Real-time ap-
plication developers tend to state bounds on latency in addition
to throughput. From a real-time systems perspective, latency is
bounded by a reservation granularity. However, effectively man-
aging disk I/O in terms of throughput is challenging for four rea-
sons: individual disk requests are non-preemptible; I/O request
times are stateful, depending in part upon the location of the previ-
ous request, which may have been from the same or a different I/O
stream; I/O times are partially non-deterministic, depending upon
unknown factors such as track boundaries; and best-, average-,
and worst-case I/O times can vary by several orders of magnitude,
with best-case requests, served out of internal memory, taking mi-
croseconds and worst-case requests, requiring gross movement of
the read/write head, taking tens of milliseconds. Hard throughput
guarantees require worst-case assumptions about request times, re-
sulting in the ability to reserve ∼0.01% of the maximum achievable
disk throughput.

The Fahrrad real-time disk I/O scheduler uses a different ap-
proach based on disk time utilization reservations. Disk time uti-
lization reservation is expressed as an amount of time a disk will
make available for a given request stream to service I/O requests.
Utilization reservations have three primary benefits. First, disk time
utilization is easily reservable: there is 100% available and appli-
cations may reserve any portion of the unreserved total (subject to
admission control requirements). Second, disk time utilization is
easily manageable: application usage may be tracked by timing
each request. Any application whose usage is below its reserva-
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tion may make additional requests until its reservation has been
met and any application whose utilization reservation has been met
must wait for service. Third, disk time utilization reservations en-
capsulate knowledge about application I/O behavior, avoiding the
need to make worst-case assumptions and allowing applications to
reserve and the system to provide—and guarantee—significantly
better disk throughput than would otherwise be possible.

The primary contribution of this work is the presentation of a
general-purpose I/O scheduler capable of providing hard guaran-
tees while maintaining performance that can exceed that of best-
effort general-purpose I/O schedulers. In so doing, we demonstrate
the effectiveness of utilization as a means of managing disk perfor-
mance and demonstrate that resource reservations and I/O perfor-
mance are not mutually incompatible.

We begin by describing the Fahrrad scheduling model, prove the
correctness of a basic scheduler based on this model, then discuss
extensions designed to address practical disk I/O issues. We con-
clude with results from our implementation showing the effective-
ness of our Fahrrad implementation.

2. THE FAHRRAD SCHEDULING MODEL
In our system, I/O reservations are made via a broker. The broker

decides if a reservation is feasible (and allowed) and informs both
the requester and the I/O system of successful reservations. In or-
der to make utilization reservations, a requester specifies its desired
throughput and/or latency and its expected I/O behavior (sequen-
tiality, burstiness, etc.) to the broker. The broker translates these
into the utilization and granularity required to support the desired
throughput and latency given the application I/O behavior.

Although potentially difficult to specify for arbitrary applica-
tions, applications requiring I/O guarantees often know their I/O
behavior: multimedia applications have highly sequential access
patterns, high-performance scientific applications have highly reg-
ular access patterns, etc. Given knowledge about disk or I/O sub-
system performance characteristics, it is relatively easy to trans-
late throughput and I/O behavior into utilization. Thus, as long as
our I/O system can guarantee utilization, it can in effect guarantee
throughput, but without the worst-case assumptions (and perfor-
mance) that plague throughput-based reservations. Where nothing
is known about the I/O behavior, we can assume the worst-case, re-
sulting in no worse performance than with throughput-based sched-
ulers.

Latency is a combination of the delay imposed in the scheduler
and the delay caused by applications queueing up requests. Appro-
priate translation from expected I/O behavior and throughput into
utilization bounds the delay caused by an application. If an appli-
cation sends I/O requests according to its reservation, its requests
will be queued no longer than the application-specified reservation
granularity (period), bounding the latency imposed by the sched-
uler. This can be formalized with a queueing theoretic model and
is demonstrated empirically in Section 9.3.

Once translated into utilization, the feasibility test for admission
control is simply whether or not the sum of the utilizations on a
given disk or I/O subsystem exceeds 100%. Additional policies,
for instance those based on QoS contracts, may impose additional
constraints.

Our Fahrrad scheduler is designed to guarantee utilization reser-
vations while maintaining high I/O performance. In Fahrrad, reser-
vations are associated with I/O streams. An I/O stream may service
requests from any logical entity: an application, set of applications,
host, virtual host, set of hosts, set of users, etc.

This architecture implicitly assumes that the performance of the
disk can be known for an individual I/O stream. This is true to

the degree that an application’s performance is related to its be-
havior. Interference from other I/O streams can affect application
performance, but Fahrrad both mitigates and, where unavoidable,
accounts for these effects. Poor data layout can also affect per-
formance by turning a logically sequential request stream into a
physically random access pattern. We assume good layout of data
on the disk platter, but some degree of uncertainly will remain due
to layout and other disk peculiarities, e.g., recalibrations to account
for thermal expansion. This degree of uncertainty can be empiri-
cally quantified, and much of it can be offset by buffering I/Os and
reserving a small amount of “overhead” utilization.

Our system distinguishes between hard and soft timeliness re-
quirements only during I/O reservations. Hard real-time applica-
tions require worst-case disk performance assumptions. Soft re-
quirements allow a certain degree of uncertainty about disk perfor-
mance and so the broker can use knowledge of request time distri-
butions to make less than worst-case assumptions for reservations.
After the reservations are made, our Fahrrad scheduler provides
hard utilization guarantees for all I/O streams.

The RBED CPU scheduler [2] addresses many of our goals in
the context of CPU scheduling. It provides robust, guaranteed, in-
tegrated real-time scheduling of processes with a wide range of dif-
ferent timeliness requirements, and guarantees isolation among the
processes regardless of their run-time behavior. Fahrrad extends
RBED to disk I/O scheduling. Like RBED, Fahrrad allows applica-
tions to reserve utilization—in this case disk utilization—and spec-
ify deadlines at which the reservation must be met. And similar to
RBED, applications may make arbitrarily hard or soft reservations.
I/O request dispatching is based loosely on EDF [11], but aggres-
sive request reordering is made possible via a Disk Scheduling Set
(DSS) which enables extremely good performance; in some cases
better than that of performance-tuned best-effort I/O schedulers.

In extending the RBED scheduler, Fahrrad similarly implements
the Resource Allocation/Dispatching (RAD) scheduling model. The
RAD model is based on the observation that scheduling consists of
two separable resource management questions: How much resource
to allocate to a process? and When to provide the process those al-
located resources? In the context of CPU scheduling, RAD has
two layers: resource allocation, which ensures feasible resource al-
location and maps application requirements into rate and deadline
parameters, and dispatching, which chooses which process to ex-
ecute based upon those parameters. Rate and deadline have been
shown to be sufficiently flexible to enable a scheduler to support a
full spectrum of timeliness requirements [10].

Because disk I/O is stateful, adapting RAD to disk scheduling
requires the addition of a third layer concerned with I/O request
ordering. Fahrrad orders individual I/O requests by logically gath-
ering as many requests as possible into a set with the property that
the I/O requests in the set can be executed in any order without vi-
olating any guarantees. Fahrrad then schedules the requests in this
set using an appropriate head scheduling algorithm with the goal of
executing the requests as fast as possible. Although intuition sug-
gests that Shortest Seek Time First (SSTF) [6] should provide the
most efficient schedule, this does not always turn out to be the case,
as we discuss in Section 6.

We present our Fahrrad scheduler as follows. We first describe
the basic I/O scheduler that guarantees utilization reservations as
long as all I/O requests are available at the beginning of each pe-
riod. It accounts for the non-preemptability of disk requests, but
it neither provides good performance nor ensures throughput isola-
tion between streams. Section 3 presents the formal basis for the
basic scheduler, and Section 4 provides its implementation details.
Section 5 shows how to improve the scheduler to account for re-
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quest statefulness, and thus how to get good performance, without
losing the guarantees we prove for the simplified model. Section 6
shows how to provide isolation between I/O streams. Section 7 re-
moves the assumption that all I/O requests are available at the be-
ginning of each period and shows how Fahrrad deals with unqueued
I/O requests. Finally, Section 8 discusses further performance en-
hancements.

3. FAHRRAD SCHEDULER THEORY
Our basic I/O scheduler guarantees utilization reservations as

long as all I/O requests are available at the beginning of each pe-
riod. In this section, we provide a feasibility test for scheduling
tasks in the basic scheduler and prove its correctness. We also
quantify the additional reservation needed to guarantee the reserved
utilization as a result of the non-preemptability of I/O requests.

3.1 Task model
A unit of disk I/O reservation is a related set of requests called

a request stream. The requests may come from a single user, pro-
cess, application, or set of these. A reservation for a real-time I/O
stream consists of the disk time utilization and the period of the
stream. The utilization specifies the percentage of disk time re-
quired to execute requests from the I/O stream. The period specifies
the granularity with which the I/O stream must receive its reserved
utilization.

In a system with n I/O request streams, a task Ti corresponds
to stream i with utilization ui and period pi. Each task is a se-
quence of periodic jobs Ji, j , with release time ri, j = di, j−1, deadline
di, j = ri, j + pi, and budget ei = ui · pi. Each job Ji, j is a sequence
of mi, j I/O requests Ri, j,k. Table 1 summarizes the notation used
throughout this paper.

Jobs are preemptible, but individual I/O requests are not. The
execution times of I/O requests vary, but the worst-case request
time (WCRT) is bounded by the worst-case seek time of the device
plus the maximum rotational delay plus the time required to trans-
fer the data and is empirically determinable with a high degree of
confidence. We use constant WCRT, because we use constant 4K
request sizes for our request accounting, which matches the size
that many systems actually send. If we are presented with large
I/O requests, we execute each of them as one request logically bro-
ken into 4K chunks. Except to fit within the reserved utilization,
such requests will not be physically broken up. In practice, we
have determined WCRT by finding the maximum response time of
highly random workloads and discarding a small number of outliers
(0.1%). These outliers can be accomodated by a small “overhead"
utilization reservation. We initially assume that all I/O requests are
queued up at the beginning of each period.

Our model is slightly different from the basic task model used in
CPU scheduling in that jobs are further divided into non-preemptible
I/O requests analogous to non-preemptible portions of CPU jobs,
e.g. when a job is in a critical section. We use previous work
on real-time CPU scheduling with non-preemptible regions in the
analysis of our model.

3.2 Meeting deadlines
We assume that each request takes no more than WCRT and each

job Ji, j is a sequence of mi, j requests. We now prove a feasibility
test for scheduling such jobs under EDF based on the utilization re-
quired for each I/O stream and a little extra to account for blocking
due to the non-preemptability of I/O requests.

Table 1: Notations

n number of I/O streams in the system
Ti task which corresponds to an I/O stream
ui disk time utilization of task Ti
pi period of task Ti
ei budget of each job of Ti, ei = ui · pi
Ji, j job of task Ti
ri, j release time of job Ji, j
di, j deadline of job Ji, j
mi, j number of I/O requests in job Ji, j
Ri, j,k I/O request of job Ji, j
αi, j,k actual execution time of request Ri, j,k
ρi, j,k (micro-)release time of request Ri, j,k
δi, j,k (micro-)deadline of request Ri, j,k

THEOREM 1. Given a set of periodic tasks Ti with period pi
consisting of jobs Ji, j , each consisting of a stream of mi, j non-
preemptible I/O requests Ri, j,k, each of which takes αi, j,k ≤ WCRT

such that ∀i, j
(

∑mi, j

k=1 αi, j,k ≤ ei

)
, Earliest Deadline First (EDF)

will determine a feasible schedule of I/O requests, as long as

U =
n

∑
i=1

ui +
WCRT

min1≤l≤n (pl)
≤ 1

In proving the theorem we use two lemmas by Liu [12] (pp. 163–
164). The first specifies how long a task can be blocked due to
the non-preemptibility of other tasks in the system. This happens
whenever a non-preemptible region of a task with lower priority
(a later deadline) is executing when a task with higher priority (an
earlier deadline) is released. In the worst case the high priority task
may have to wait for the entire duration of the non-preemptible
region of the lower priority task. Under EDF, any task may have
higher priority than any other, depending upon the phasing of the
deadlines, and so we get the following lemma.

LEMMA 1. (Liu) In a system with n tasks scheduled by EDF, the
maximum blocking time bi(np) of a task due to non-preemptivity is
given by

bi(np) = max
1≤l≤n

θl

Where θl denotes the longest non-preemptible portion of any job
in task Tl .

The second lemma defines a utilization-based schedulability con-
dition for EDF when executing tasks that may block, either by self-
blocking or due to the non-preemptibility of other tasks. It is the
standard EDF schedulability condition with an additional term ac-
counting for the blocking time.

LEMMA 2. (Liu) A task Ti with utilization ui, deadline Di, pe-
riod pi, budget ei = ui · pi and total blocking time bi is schedulable
with other independent periodic tasks on a processor according to
the EDF algorithm if

n

∑
l=1

el

min(Dl , pl)
+

bi

min(Di, pi)
≤ 1

The system is schedulable if the condition is met for every i =
1,2, ...,n
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We are now ready to prove the theorem.

PROOF. The longest non-preemptible portion of any job is a sin-
gle I/O request, each of which is bounded by the worst-case request
time (WCRT). Thus by Lemma 1, the maximum blocking time of
any task due to non-preemptability bi(np) = WCRT. Our jobs do
not block themselves, so bi = bi(np) = WCRT.

Lemma 2 says that a system of tasks Ti is schedulable if

∀i

(
n

∑
l=1

el

min(Dl , pl)
+

bi

min(Di, pi)
≤ 1

)
(1)

In our system, ∀l(Dl = pl) and bi = WCRT, and so Equation 1
is equivalent to

∀i

(
n

∑
l=1

el

pl
+

WCRT
pi

≤ 1

)

We know that el/pl = ul and

∀i
(

WCRT
pi

)
≤ WCRT

min1≤k≤n (pk)

and so a system of tasks Ti in our system is schedulable if

n

∑
l=1

ul +
WCRT

min1≤k≤n (pk)
≤ 1

In other words, a task set that would be feasible under preemptive
EDF (i.e. where ∑ui ≤ 1) is feasible in our system as long as we
reserve enough extra time for 1 worst-case request in the task with

the shortest period
(

WCRT
min(pi)

)
.

3.3 Guaranteeing utilization
Theorem 1 ensures that if we have mi, j requests per period and

∑mi, j
k=1 αi, j,k = ei then our utilization guarantees are met. However,

request service times are not known a priori and are partially non-
deterministic: they can only be known after the request has com-
pleted. Therefore, mi, j can only be determined at run-time, after
the utilization guarantee has been met, by counting the number of
requests required to achieve the reserved utilization.

Because requests are non-preemptible with maximum potential
execution time WCRT, we cannot issue a request unless the job has
at least WCRT time remaining in the current period. In order to
guarantee the desired budget ei to each job Ji, j the scheduler must
actually budget ei + WCRT. In other words, in order to guaran-
tee utilization ui = ei

pi
we must reserve utilization ui′ = (ei+WCRT)

pi
.

This is expressed formally in the following Theorem:

THEOREM 2. Given a set of tasks Ti consisting of jobs Ji, j with
budget ei, each job consisting of a series of requests Ri, j,k with ac-
tual execution time αi, j,k ≤ WCRT known immediately after com-
pletion of the request, in order to guarantee the budget ei in each
period the scheduler must reserve ui′ = ui +WCRT/pi.

PROOF. By contradiction.
Suppose we reserve ui′ = ui + γ/pi, where γ < WCRT. Then we

have budget ei′ = ei + γ for each job Ji, j .

Suppose further that a particular job Jl,m consists of a request
stream of requests Rl,m,k such that

n

∑
k=1

αl,m,k = ei

and therefore
n−1

∑
k=1

αl,m,k = ei −αl,m,n

The scheduler cannot issue request Rl,m,n unless job Jl,m has
enough budget remaining for the request’s worst-case, WCRT. Thus
we get the inequality

ei −αl,m,n +WCRT ≤ ei + γ

αl,m,n can be arbitrarily small (for example, when serving a small
request out of the track buffer), and so we have

ei +WCRT ≤ ei + γ

This contradicts the assumption that γ < WCRT.

Theorem 2 says that in order to guarantee the reserved utilization
to a request stream regardless of the I/Os it requires and the amount
of time they take, we must reserve enough utilization for one extra
worst-case request per period.

4. BASIC FAHRRAD SCHEDULER
To meet the condition of Theorems 1 and 2, the broker reserves

extra time for one worst-case request for the stream with the short-
est period and one additional request per period for each I/O stream.
The broker admits a new I/O stream if the sum of the augmented
utilizations of the new and existing streams plus the
non-preemptibility overhead are less than or equal to 100% of the
disk utilization. In practice, as long as the periods are not too
short (i.e., seconds or longer), these overheads are insignificant.
I/O streams that do not require real-time guarantees are combined
into one best-effort stream, which receives the utilization left over
from the real-time streams. The scheduler reserves a minimum uti-
lization (nominally 2%) for the best-effort stream to make sure that
it is not starved completely.

The basic scheduler architecture consists of request stream queues
and a request dispatcher as shown in Figure 1. Each request queue
contains the requests from a single I/O stream and requests are or-
dered by their arrival times. The request dispatcher takes requests
from request queues and sends them to the disk while ensuring that
streams get their reserved utilization in each stream period without
exceeding their reservations.

To help the request dispatcher do accounting of how many re-
quests it can (and must) dispatch per period within each streams’
reserved utilization, we assign a micro-deadline δi, j,k to each re-
quest in each stream. Given the micro-deadline δi, j,k−1 of the pre-
ceding request, the micro-deadline δi, j,k of the current request is
assigned

∀i, j,k : δi, j,k ← δi, j,k−1 +
WCRT

ui

Since micro-deadlines are assigned in evenly spaced intervals of
length WCRT/ui, the number of requests with micro-deadlines ear-
lier than the stream’s deadline is 'ei/WCRT( which is the min-
imum number of requests we must issue in the beginning of the
period.
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Figure 1: Basic Fahrrad architecture.

At the beginning of each period, the request dispatcher sends
requests to the disk in Earliest Micro-Deadline First (EµDF) order,
as long as their micro-deadlines are less than or equal to the current
period. Each time a request completes, the scheduler measures its
actual execution time αi, j,k , and if αi, j,k < WCRT, it adjusts the
micro-deadlines of all requests in stream i as follows:

∀ j, l : δi, j,l ← δi, j,l −
WCRT−αi, j,k

ui

In practice, micro-deadlines are stored as offset of per-stream value,
and offset is updated in constant time.

Any request whose updated micro-deadline is earlier than its
stream’s deadline will also be sent to the disk in the current pe-
riod. As an example, consider stream A shown in Figure 1 with
20% utilization reservation and a period of 250 ms. If WCRT =
25 ms, this reservation is capable of servicing at least 2 requests
per period. Initially the micro-deadlines of the first three requests
are 125 ms, 250 ms, and 375 ms. The dispatcher issues the first and
second requests in the beginning of the period. If the first request
takes only 5 ms, the micro-deadlines of the second and third re-
quests become 150 ms and 275 ms. If the second request also takes
5 ms, the micro-deadline of the third request becomes 175 ms <
250 ms, and this request is also sent to the disk in this period. The
scheduler will keep shifting micro-deadlines as requests complete
and will continue to issue requests from the stream until the micro-
deadline of the request at the head of the request queue is greater
than the deadline. When that occurs, the utilization reservation has
been met.

Shifting micro-deadlines correctly accounts for the disk time used
by each stream per period. Initially the dispatcher issues mi =
'ei/WCRT( requests for each stream i. Suppose each request takes
time αi, j,k ≤ WCRT, and let x = ∑mi

k=1 αi, j,k . We show that the
scheduler correctly dispatches '(ei − x)/WCRT( more worst-case
requests during this period to meet its utilization reservation (this
will repeat until the scheduler cannot fit any more requests in this
period).

Initially, the micro-deadline of the mi’th request is

δi, j,mi = ri, j +
mi ·WCRT

ui
.

After shifting micro-deadlines, the release time of (mi + 1)’th re-
quest is the modified δi, j,mi

ρi, j,mi+1 = ri, j +
mi ·WCRT

ui
−

mi ·WCRT−∑mi
k=1 αi, j,k

ui

which reduces to ρi, j,mi+1 = ri, j + x/ui. The remaining time γi of
stream i left in the current period

γi = di, j −ρi, j,mi+1 = di, j − ri, j −
x
ui

= pi −
x
ui

The number of evenly spaced intervals of length WCRT/ui in inter-
val γi is (pi−x/ui)/(WCRT/ui) = (ei−x)/WCRT. So the number
of worst-case requests that fits into this interval is '(ei−x)/WCRT(.

5. DEALING WITH THE STATEFUL NATURE
OF DISK I/O

We extend the basic architecture to allow efficient reordering of
disk requests without violating any utilization guarantees. While
dispatching requests in EµDF order guarantees deadlines, it pro-
vides poor performance because it ignores the cost of seeking the
disk head. Request reordering addresses the statefulness of disk
I/O by rearranging queued disk requests so as to minimize the total
movement of the read/write head needed to service those requests.
Since requests from a single stream are more likely to be close to
each other on disk than requests from different streams, this of-
ten means taking several requests in a row from a single request
stream, violating the EµDF ordering. However, as head movement
takes time, minimizing it by re-ordering requests can significantly
improve throughput.

Many algorithms exist for optimizing disk performance by mini-
mizing seek time. Their performance is generally limited by the ac-
tual requests in the queue—reordering can only achieve so much—
and by the need to eventually service all requests. Since best-effort
I/O schedulers do not know the acceptable latency bounds on re-
quests in individual streams, a system-level heuristic is applied to
bound the amount of time a disk request can languish without ser-
vice.

In real-time disk scheduling, reordering may not be as flexible
as in non-real-time systems because it must not violate guarantees.
With very short deadlines this has the potential to decrease per-
formance unacceptably. On the other hand, because we know the
deadlines of each I/O stream (however they were determined), we
need not guess at heuristics in an effort to be fair. With all but the
shortest deadlines, this has the potential to increase overall through-
put relative to best-effort I/O schedulers, an effect we have seen in
our implementation.

5.1 Efficient request reordering
The extended Fahrrad architecture consists of four parts: re-

quest stream queues, the Disk Scheduling Set (DSS), the request
dispatching policy, and the request ordering policy. The request
dispatching policy moves requests from the request stream queues
to the DSS such that the DSS always contains the largest set of
requests that can be executed in any order without violating utiliza-
tion reservations.
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Figure 2: Example of dispatching to the DSS.

The request dispatching policy determines a request horizon—
the earliest deadline in the system—and moves all requests with
micro-deadlines no later than the request horizon into the DSS. In
the example shown in Figure 2, the first horizon is the deadline of
stream A, dA,1 = 250 ms, so all requests in all streams with micro-
deadlines δi, j,k ≤ dA,1 are moved into the DSS.

Since this includes all of the requests from the stream with the
earliest deadline, executing all of the requests in the DSS—in any
order—is guaranteed to execute all of the requests required to meet
the earliest deadline in the system. We now show that it is always
possible to do so before the deadline, regardless of the order in
which the requests are executed.

First, the total disk time needed to guarantee execution of all
requests in the DSS does not exceed the time left before the hori-
zon. Suppose this time is x. Since micro-deadlines are assigned in
evenly spaced intervals of size WCRT/ui, there are 'x ·ui/WCRT(
worst-case requests in the DSS from each stream i. The total disk
time y needed to guarantee requests from all streams is therefore

y = ∑n
i=1 WCRT · ' x·ui

WCRT(

≤ ∑n
i=1 WCRT · x·ui

WCRT

= x · ∑n
i=1 ui

∑n
i=1 ui ≤ 1, so we have the inequality

y ≤ x ·
n

∑
i=1

ui ≤ x.

This means that there is enough time to execute all requests in
(or moved to) the DSS before the horizon if they take no more than
their worst-case time. One can view the DSS as a set of WCRT
slots and moving requests to the DSS as filling the slots. It is easy
to see that the order of the slots does not matter, since they are all
of equal size.

We now consider the case when requests take less than WCRT.
If a request takes less than WCRT, the micro-deadlines of all re-
quests of its stream are shifted as described in the previous section.
The request dispatcher moves requests whose micro-deadlines have
become less than or equal the request horizon into the DSS. Admit-
ting new requests to the DSS does not violate any guarantees for

requests currently in the DSS, because shifting micro-deadlines as-
sumes worst-case time for requests that are not yet executed and the
argument is similar to the argument given above. Thus reordering
in the DSS does not violate any utilization reservations.

When all requests in the DSS are executed and the micro-deadlines
of all requests in all stream queues are greater than the current re-
quest horizon, the horizon is moved up to the next earliest deadline
and the DSS is again filled with requests. If disk time in the DSS
did not fit an integral number of requests, the horizon is moved up
earlier (but not more than one WCRT earlier). This ensures that the
disk time unused in the previous scheduling interval will be avail-
able in the next scheduling interval.

We can use C-SCAN or SSTF as our reordering policy, because
they both generally provide good performance. Both ensure that
most contiguous requests in the DSS will be serviced sequentially,
providing good performance for those streams whose requests have
good locality. Because micro-deadlines are continually adjusted
as requests are serviced and more requests are moved to the DSS
if there is enough disk time budget, the potential locality can be
significant. In particular, if stream A in Figure 2 is sequential, a
locality-respecting ordering algorithm can continually service re-
quests from stream A until it reaches its budget of 50 ms, greatly
improving the performance of that stream.

6. ISOLATION FOR THROUGHPUT GUAR-
ANTEES

The Shortest Seek Time First (SSTF) [6] algorithm, which we
initially implemented in the DSS, provides good performance when
DSS sizes are big, because there is a lot of opportunity for reorder-
ing. However, the size of the DSS is limited by the request hori-
zons, which may be short even if only one stream in a system has
a short period, imposing additional seeks on all request streams
and thereby limiting performance. This is unacceptable, as we ulti-
mately want to be able to make throughput guarantees based on our
utilization reservations; each stream’s performance must be based
only on its I/O behavior, not that of other streams.

6.1 Early deadline extension
As soon as a stream has used its budget for the current period, it

has met its deadline and its next job can be released and its deadline
extended to the end of the next period. When the job with the ear-
liest deadline does this the horizon is advanced to the next earliest
deadline in the system, allowing more requests into the DSS. This
does not cause any deadlines to be violated because we only allow
new requests into the DSS after we have met the earliest deadline.
The new horizon is the next earliest deadline, so the DSS will again
contain only requests with micro-deadlines ≤ the earliest (unmet)
deadline. In other words, we always maintain the invariant that the
DSS contains all and only those requests whose micro-deadline is
less than or equal to the earliest deadline in the system. We showed
in Section 5 that executing these requests in any order will not vio-
late the deadline of the stream with the earliest deadline.

The ordering policy can ensure that the horizon is extended as
quickly as possible by scheduling bottleneck requests—requests
from the stream with the earliest deadline—first. Fahrrad therefore
uses EDF on stream deadlines in the DSS and SSTF for requests
of streams with the same deadlines. This policy provides better
performance isolation because bottleneck streams do not impose
seeks on other streams in each period, because they are serviced
continuously until the stream with the next deadline becomes the
bottleneck stream.
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6.2 Accounting for seeks from other streams
EDF scheduling when all requests are available at the beginning

of each period removes all but two extra seeks not caused by inter-
stream seeking. At least one seek is required to and away from the
stream whose deadline is the request horizon.

THEOREM 3. The number of seeks S required to process n streams
of requests ≤ ∑n

i=1(si +2), where si is the number of seeks required
to process the requests of stream i when handled in isolation, i.e.
without interference from requests belonging to any other stream.

PROOF. Assume we have n streams of requests, each requiring
αi seeks when run in isolation. By definition, we have to process
some requests from stream i within each period of stream i. The
seeks between requests of stream i and other requests of stream i
are no different from when the stream is processed in isolation and
sum up to si. The only extra requests are those between requests
of stream i and stream j. These are imposed once per period as
we seek to and from the requests of the stream with the earliest
deadline.

Thus in order to guarantee isolation we must reserve for each
stream utilization ui′′ = ui′+ 2 · WCRT

pi
= ui + 3 · WCRT

pi
. This lim-

its the impact of imposed seeking to the stream responsible for the
seek, and guarantees throughput isolation between streams in the
case where all requests are queued up at the beginning of each pe-
riod.

7. DEALING WITH UNQUEUED REQUESTS
Our discussion so far has assumed that all requests are available

at the beginning of each period. In practice, applications send I/O
requests in varying patterns. Some applications may only have a
few outstanding requests in their queues and the timing of request
arrivals during the period may vary. To provide good guarantees
we would like to hold onto reservations as long as possible so that
a stream has the greatest possible chance of using its reservation
regardless of when its requests arrive.

To accommodate time-varying request arrival patterns, the sched-
uler holds onto reservations by holding empty slots in the DSS for
tasks that do not have enough requests queued up. Empty slots are
expired no later than the job’s deadline if requests do not arrive to
fill them. Empty slots have the potential to negatively impact per-
formance in two ways. First, unqueued requests may cause extra
seeks as the head moves between requests of different (queued) re-
quest streams instead of contiguously servicing all of the requests
of the process with the earliest deadline. Second, an empty slot due
for execution is the disk equivalent of a task blocking itself during
its period. As discussed in Section 4 and quantified in Lemma 2,
such self-blocking must be accounted for in the utilization calcula-
tions.

This leads to mutually conflicting goals: To make good guaran-
tees we want to hold empty slots as long as possible, but to avoid
the overhead from the extra seeks needed to seek between the re-
quests of the stream which now has an empty slot and those of some
stream with a filled slot we would prefer to immediately expire the
slot of the offending task. If the request arrival pattern is known
ahead of time, it can be accounted for in the utilization reserva-
tions. In the worst case, where all requests may arrive at the end
of the period, this leads to too much overhead. Caching can help
by queuing requests in one period and servicing them in the next,
but some requests are uncacheable. Read-modify-write workloads,
for example, will not queue up the write until after the read has
completed and some processing has been done.

Our solution lies somewhere in between: empty slots can be
held, but the stream responsible for the seeking, by virtue of not
having its requests queued up, must be billed for the additional
seeks that result. This overhead affects only the stream that failed
to queue up its requests, as desired. To the degree that this “lumpy”
request distribution can be characterized, it can be accounted for in
the stream’s reservation. Otherwise, the performance of the offend-
ing stream must simply suffer.

7.1 Current implementation
Our current implementation holds stream’s reservations as long

as possible. The scheduler creates empty slots for tasks that do not
have enough requests queued up, assigns micro-deadlines to them
and moves them to the DSS using the same policy we use for actual
requests. Therefore, the DSS is essentially a set of WCRT slots,
either empty or filled with requests. The reordering policy sends
actual requests to the disk, ignoring empty slots. If a request arrives
whose stream has one or more empty slots in the DSS, the request
fills the stream’s empty slot with the earliest micro-deadline. When
only empty slots are left in the DSS, the scheduler starts expiring
empty slots and their disk time is donated to other streams.

The scheduler currently donates the disk time from expired slots—
dynamic slack—to the best-effort stream. If there are no best-effort
requests, the scheduler idles the disk. There are more efficient ways
to donate slack and in the future we will explore using slack to im-
prove the performance of soft real-time tasks, analogous to what
has been done for CPU scheduling [9].

The slot expiration algorithm works as follows. Suppose there
are k empty slots in the DSS and the horizon is h. Then the first slot
expires at time texp = h−WCRT ·k if there are no I/O requests in the
DSS. At time texp, the scheduler chooses the slot with the earliest
micro-release time, equal to the micro-deadline of the previous slot,
ρi, j,k = δi, j,k−1. If there is more than one such slot, the slot from
the stream with the earliest deadline is chosen. The scheduler then
fills this slot with a request from another stream, and this request
is dispatched to the disk. The expiration time is reset to texp =
h−WCRT · (k − 1), and it may be reset again as slots are filled
with requests to account for the actual number of empty slots.

7.2 It’s not all bad news
If a request arrives after its slot expires, the stream loses some

portion of its reserved utilization. However, in contrast to our ear-
lier assumption that all requests must be queued up at the beginning
of the period, we now show that as long as requests arrive before
their micro-release times the scheduler guarantees that their slots
never expire.

LEMMA 3. Empty slots do not expire until time t ≥ ρi, j,k =
δi, j,k−1, the micro-release time of the request Ri, j,k that fills the
slot.

PROOF. By contradiction.
Assume that a slot has expired at time t < ρi, j,k.
In our implementation, when a slot is expired, there are no full

slots in the DSS and the slot has the earliest micro-release time of
any slot in the DSS, i.e.

∀x,y,z : ρi, j,k ≤ ρx,y,z

Suppose there are k slots in the DSS and h is the horizon. By
our algorithm t = h−WCRT · k and by our assumption all micro-
release times of slots in the DSS should be in the interval (t,h),
therefore

∀x,y,z : h−WCRT · k < ρi, j,k ≤ ρx,y,z < h
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Let ki be the number of slots from each stream i in the DSS, such
that ∑n

i=1 ki = k. For a slot to be in the DSS, its micro-deadline
should also be less than or equal the horizon. So, having ki slots
in the interval (h−k ·WCRT,h] means that this interval contains ki
intervals of length WCRT/ui, which we can express as

∀i : ki ·
WCRT

ui
< k ·WCRT

which implies ∀i : ki < k ·ui. Therefore, we know that
n

∑
i=1

ki <
n

∑
i=1

k ·ui

∑n
i=1 ui ≤ 1, so we have the inequality

k < k ·
n

∑
i=1

ui ≤ k

Thus we have the contradiction k < k.

Since slots do not expire until their micro-release times, if a
stream sends I/O requests no later than their micro-release times,
it is guaranteed to receive its full utilization. We prove this in the
following theorem.

THEOREM 4. If a stream of requests arrives such that each re-
quest Ri, j,k arrives no later than ρi, j,k, then the utilization ui is
guaranteed.

PROOF. The only way a stream can get less than its reserved
utilization is if it has a slot expired. By Lemma 3 this cannot happen
unless a request arrived after its micro-release time ρi, j,k .

Despite this good news, it is still the case that slots left unfilled
after their micro-release time can impose extra overhead. The over-
head of accounting for the corresponding blocking time of a stream
as well as the extra seeks imposed is quantifiable via an analysis
similar to that in Theorem 1. However, we explain in the next sec-
tion how the overhead can be mitigated by heuristic techniques that
coalesce requests from outside the DSS when empty slots are en-
countered.

8. PERFORMANCE ENHANCEMENTS
Early deadline extension and EDF only help if there are bottle-

neck requests—requests from the stream with the earliest deadline—
in the DSS. If the bottleneck stream has an empty slot in the DSS,
the scheduler services other streams while holding empty slots for
bottleneck requests. While extra seeks are inevitable for streams
that send their requests late, when the bottleneck stream is using
less disk time than it reserved it will force the scheduler to hold
empty slots until they expire. This prevents the scheduler from
extending the deadline, which leads to performance isolation prob-
lems.

In the case where a bottleneck stream has empty slots in the
DSS, we try to increase the contiguity of requests in the DSS of
non-bottleneck streams. Our initial approach moves requests to the
DSS from each stream proportional to their utilization reservations.
However, only requests from the stream with the earliest deadline
must be in the DSS; the rest of the requests in the DSS can be
chosen from other streams as long as all deadlines are met. In the
example in Figure 2, the DSS can have 7 requests from stream B
and none from stream C in the first DSS interval with the horizon
of 250 ms. In the next interval with the horizon of 500 ms, the DSS
will contain 3 requests from stream B and 4 requests from stream
C; both streams will meet their deadlines.

To increase the contiguity of requests, non-bottleneck streams
trade slots in the DSS with slots outside the DSS to maximize the
number of filled slots from one stream in the DSS. Two streams are
allowed to swap slots as long as the micro-deadlines of the slots are
less than or equal the earliest deadline of the two streams. This does
not violate deadlines: slots are of the same size; swapping them in
schedule does not affect any stream except those whose slots were
swapped, and as long as both slots have micro-deadlines less than
or equal to both streams’ deadlines, the same amount of work will
be done before each deadline with and without the swap.

9. EVALUATION
Our Fahrrad prototype is implemented as a loadable block-device

driver for the Linux 2.6.17 kernel. The driver sits on top of an un-
derlying disk device and exports a block device named /dev/fahrrad.
All streams share the same underlying device. A user-level pro-
gram makes reservations via an ioctl() call. An fcntl() call is
used to associate an I/O stream with a reservation.

All of our experimental data was collected on a Hitachi Deskstar
DJNA-371350, which is a 13.5 GB 7200 RPM IDE drive with an
average seek time of 8.5 ms. In all experiments with more than one
run, the variance is too small to be visible. Error bars are drawn (but
invisible) for the first experiment and omitted for the remainder.

9.1 Sequential workloads
A key requirement is that our scheduler provide isolation be-

tween request streams, so that each stream gets its reserved utiliza-
tion independent of the behavior of other streams. Our first exper-
iment shows that Fahrrad provides perfect isolation when provided
with sequential workloads having many outstanding I/Os. Since
there are always I/Os available in the request queues, Fahrrad ex-
tends the DSS request horizon as soon as the bottleneck requests
are serviced; request streams with small periods that limit the size
of the DSS do not affect the performance of other sessions.

The workload consists of four sequential streams with many out-
standing I/Os. Each stream starts at a different location on the disk,
forcing a seek between requests of different streams. Each stream
reserves 20% of the available disk time. Three of the streams have
2 second periods and the period of the fourth stream changes from
125 ms to 2 seconds. This workload is illustrative, but is not rep-
resentative of actual applications, which do not generally vary their
period dynamically at runtime. However, this allows us to view the
behavior of the scheduler over a range of conditions.

The experiment measured the utilization and throughput that each
stream received for different values of the period of stream 4. Fig-
ure 3(a) shows that each stream received 20% utilization, as they
had reserved. Figure 3(b) shows that each stream received through-
put based on its behavior, with streams 1-3 receiving equal through-
put and stream 4 receiving throughput varying based on its period
(and therefore its overhead to seek back and forth from the other
streams each period).

It will not always be the case that all streams will have an in-
finite number of I/Os queued up. The next experiment examines
this case by looking at how the presence of a hard real-time stream
with a small period affects the performance of other streams in the
system. The workload is the same as in the previous experiment,
except stream 4 is a hard real-time (HRT) stream that sends a fixed
number of I/Os in the beginning of each period and reserves disk
time assuming worst-case execution time.

Figure 4(a) shows the utilization received by each stream. Streams
1–3 receive 20% utilization as reserved, since they always have
I/Os outstanding. The hard real-time stream uses much less than
20% of the reserved utilization because it assumes absolute worst-
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Figure 3: Performance of four sequential request streams as the period of stream 4 changes, while periods of other streams remain constant.
Each stream reserves 20% of disk time. Results are the average of 10 runs, including error bars (too small to be visible).
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Figure 4: Performance of four sequential streams with fixed periods as the period of the HRT stream changes. Each stream reserves 20%
disk utilization. AFAP refers to sequential streams that queue requests as fast as possible. Results are the average of 10 runs.

case execution time when making its reservation. The received uti-
lization of the HRT stream decreases as its period increases, be-
cause more of the (fixed number of) HRT requests can be scheduled
together and thereby overhead required to service the HRT stream
decreases. As shown in Figure 4(b), the HRT stream receives its
required throughput—the same as the number of I/Os per second it
sends—so it does not need all of its reserved utilization.

Figure 4(b) shows that the throughput of streams 1–3 decrease
somewhat in the presence of HRT stream with very small periods.
Since the HRT stream uses much less disk time that it reserves,
the scheduler creates empty slots to hold its reservation as long as
possible. The HRT stream does not send more requests until the
next period, so there is no opportunity to extend its deadline. In
this case, slot swapping helps, but with very small HRT periods
the performance of the other streams drops by 20-30% due to the
limited sequentiality achievable from such swapping. For HRT pe-
riods greater than 500 ms, the performance of the other streams is
not affected by the HRT stream.

The previous two experiments showed the affect of two extreme
cases on the performance of streams in the system. The first case is
most favorable for early deadline extension, which yields very good
isolation. The second case is the least favorable: the HRT stream
over-reserves utilization and ends up with many empty slots, so it
is rarely possible to extend the deadline and we need to rely on slot
swapping to provide good performance and isolation. Even in this
case, we find very good isolation above periods of about 1/2 sec-
ond, which is more than adequate for most I/O-based applications.
Shorter periods are also feasible as long as adequate buffering is
available.

9.2 Non-sequential workloads
Non-sequential workloads add additional seeks into the request

streams. These are handled by charging the appropriate stream for
the seek, maintaining the isolation property of our scheduler.

The next experiment shows the behavior of the four streams from
the previous experiment with the addition of a best-effort stream
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Figure 5: Performance of 4 sequential real-time streams and one best-effort stream as the period of the HRT stream changes. Each stream
reserves 20% of disk time. AFAP refers to sequential streams that queue requests as fast as possible. Results are the average of 10 runs.

that sends random I/Os as fast as possible. Figure 5(a) shows that
the utilization of the HRT stream is less than its reservation because
its I/Os take less than worst-case time. All unused disk time, in-
cluding that reserved but unused by the HRT stream, is (currently)
donated to the best-effort stream. The throughput of all streams,
shown in Figure 5(b), drops a little because the streams are mixed
with a random stream. This suggests that our seek billing model as
implemented is as yet imperfect; other streams are being penalized
somewhat for the misbehavior of the best-effort stream. Neverthe-
less, performance and isolation are still very good, especially when
the HRT period is greater than about 1 second.

The next experiment shows the behavior of semi-sequential streams
in the presence of both an HRT stream with different periods and
a random best-effort stream. As above, the HRT stream, shown in
Figure 6(a), receives no more utilization than it can use, and the
remainder is made available to the best-effort stream. In this case,
the throughput of each stream is determined by its I/O behavior, in
this case its degree of sequentiality, as desired. The performance
degradation is proportional to the number of seeks and is easily
quantifiable off-line. This knowledge, together with a characteri-
zation of the application behavior, would be used by the broker to
provide an appropriate utilization reservation for a given desired
throughput.

9.3 Workloads with latency requirements
If a request stream sends I/Os according to its reservation, it is

guaranteed to receive its reserved utilization and complete its I/O
requests by the end of each period. In this case, I/O response times
are bounded by the period of the request stream. The next ex-
periment examines how period reservation affects request response
times. The workload consists of one random hard real-time (HRT)
stream and one best-effort stream that sends short bursts of random
I/Os (maximum burst is 30 I/Os) at random times. The HRT stream
sends a fixed number of I/Os in the beginning of each period and
reserves 50% utilization assuming worst-case I/O execution time.
The best-effort stream uses the remaining 50% of the disk time.

Figure 7 shows the cumulative distribution of request response
times of the HRT stream for reservations with three different peri-
ods. Response times are generally shorter for smaller periods and
they do not (usually) exceed the period of the stream. With the
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Figure 7: Cumulative distribution of request response times of the
random HRT stream. The HRT stream reserves 50% of disk time,
and it runs with one random bursty stream on background. Each
line represents different period reservation for the HRT stream.

smallest period (150 ms), the HRT process has 8 outliers (deadline
misses) out of 2000 requests, representing 0.4% of all requests. We
attribute this to the non-real-time CPU scheduling of the workload
generator that causes it to send some I/Os late. Requests that arrive
too late in the period are serviced in the next period. In the case
when an I/O stream fails to queue up its requests before its slots
expire, its request response times are bounded by two periods.

9.4 Comparison with a best-effort I/O sched-
uler

Using a variety of tricks, including large I/O buffers, Linux is
often able to provide good real-time I/O performance without any
explicit real-time support. For example, we can run a video or audio
player on Linux as long as we do not do much else. However,
in the presence of other workloads, I/O performance can degrade
seriously. The next experiment demonstrates this effect, showing
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Figure 6: Performance of 4 semi-sequential real-time streams and one best-effort stream as the period of the HRT stream changes. Each
stream reserves 20% of disk time. AFAP refers to sequential streams that queue requests as fast as possible. Results are the average of 10
runs.

the same workload under Linux and Fahrrad.The workload consists
of the following streams: media 1 sends 400 sequential I/Os per 1
second period and reserves 20% of the disk time, media 2 sends
800 sequential I/Os per 1 second period and reserves 40% of the
disk time, transaction sends short bursts of random I/Os at random
times and reserves 30% of disk time, and background stream uses
remaining 10% of disk time for random I/O requests.

Figure 8 shows the throughput results during a 500 second in-
terval. Linux fails to support the media 2 stream, providing an
average of about 600 I/Os per second with high variance. Fahrrad
meets both the utilization guarantees (not shown), and the through-
put requirements of the I/O streams with extremely low variance.
Not only does Fahrrad honor its reservations and meet all applica-
tion performance requirements, its overall throughput exceeds that
of Linux by about 200 I/Os per second.

10. RELATED WORK
The spectrum of existing disk schedulers with QoS guarantees

suggests that there is an “inevitable” tradeoff between providing
good guarantees and providing good performance. On one side of
the spectrum are schedulers that try to provide a degree of isola-
tion between streams, but no real-time guarantees. Some of these
schedulers have focused on fair resource sharing among multiple
streams, such as YFQ [3] and other fair-queuing algorithms [7, 8],
Hierarchical Disk Sharing [22], and Zygaria [21]. Other schedulers
have focused on sharing of bandwidth or I/O rate, including lottery
scheduling [19].

Other schedulers support particular classes of real-time guar-
antees, such as schedulers targeting multimedia I/O, e.g. Clock-
wise [1]. They are effective in managing their designed workloads,
but they do not support the full range of hard real-time, soft real-
time and best-effort guarantees.

Cello [18], MARS [4], and the work by Wijayaratne and Reddy [20]
support multiple classes of real-time and best-effort workloads by
implementing a two-level hierarchy of schedulers. Shenoy et al. [18]
concluded that time-based allocation is good for real-time work-
loads, such as video, and recommends using bandwidth alloca-
tion for other, more general workloads. Fahrrad differs from these

schedulers by supporting the range of application requirements in
a single scheduling algorithm.

Molano et al. [15] implemented a soft real-time filesystem in the
RT-Mach kernel allowing for disk bandwidth reservations. The ap-
proach uses the same admission criteria as described in Theorem 1,
but requires all requests scheduled for a single period to be sequen-
tial to guarantee all deadlines. In order to achieve more efficient
resource usage the scheduler trades off hard real-time guarantees
and fine granularity (short periods). Fahrrad provides fine-grained
hard real-time guarantees without affecting resources available for
other streams.

Several real-time scheduling algorithms [16, 5] aimed to opti-
mize performance while meeting real-time guarantees by combin-
ing seek-optimizing algorithms such as SCAN with EDF real-time
scheduling. SCAN-EDF [16] does so by sorting I/O requests in
EDF order and re-ordering requests with the same deadline using
SCAN. GSR [5] creates feasible scan-groups representing set of
requests that can be executed while seeking in particular direction.
Both algorithms focus on real-time scheduling of I/O requests with
individual deadlines. Real workloads however do not usually re-
quire reservation on per I/O basis. Fahrrad supports arbitrary reser-
vation granularities (periods), thus allowing more opportunities for
reordering of requests in workloads with larger periods and more
efficient scheduling as a result.

The most similar system to Fahrrad is the scheduling frame-
work in DROPS [17], which supports hard real-time, soft real-
time and best-effort guarantees. Like Fahrrad, DROPS allows ar-
bitrary reservation granularities, but reservations are on through-
put. DROPS tries to optimize disk utilization by dividing a job
into mandatory and optional parts. Only mandatory requests are
guaranteed and optional requests are executed if there is slack left
from mandatory requests. Since mandatory part reservations are
made using worst-case assumptions, reservable throughput is low.
In contrast, Fahrrad is based on disk time utilization reservation,
which avoids the need to make worst-case assumptions for reserva-
tions and thus allows more efficient disk resource reservation.

Fahrrad’s DSS is similar to the Dynamic Active Subset (DAS)
in DROPS, which is a subset of outstanding disk requests which
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Figure 8: Behavior of mixed workload during 500 seconds, with and without Fahrrad. Points are the average for 5-second intervals.

can be sent to disk in any order without violating guarantees. DAS
uses Shortest Access Time First algorithm to dispatch requests to
the disk. However, Reuther et al. [17] do not discuss how they
handle unqueued requests and the guarantees in the case of different
arrival times of requests. Also, the admission control in scheduling
framework in DROPS does not reserve the extra time needed to
account for non-preemptability of I/O requests.

Fahhrad does not exploit any knowledge about disk characteris-
tics. An alternative approach that others have advocated [13, 14,
17] is to take into account detailed knowledge about the disk, i.e.
layout of blocks on the disk platter, disk geometry, seek times, and
rotational speed. Previous experience of one of the authors of this
paper has shown that it is time consuming to model the disk, be-
cause every disk has different characteristics, and as a result it is
not practical. This experience was a basis of our work to provide a
disk scheduler that does not require detailed knowledge about the
disk.

11. CONCLUSIONS
The Fahrrad disk I/O scheduler provides correct real-time schedul-

ing of a combination of hard and soft real-time I/O streams within
a single scheduler. It guarantees that an I/O stream will obtain a
specified amount of utilization of the disk, with a specified pe-
riod. A basic scheduling algorithm, which uses EDF internally,
correctly handles non-preemptible I/O requests. Adding an order-
ing mechanism—the DSS—to the algorithm allows the scheduler
to obtain good performance by ordering requests to account for the
statefulness of disk I/O processing. The techniques for ordering
requests within the DSS preserve the scheduler’s correctness.

The amount of utilization reserved for a given request stream
must be “padded” with the utilization for at least one extra worst-
case request to meet utilization guarantees, and that padding with
three worst-case requests worth ensures that each stream’s through-
put expectation, from which the utilization reservation is derived,
is isolated from the behavior of other streams.

We have implemented Fahrrad as a loadable block-device driver
for the Linux 2.6.17 kernel. Our implementation includes most
of the features presented above including request queues, the DSS,
micro-deadline adjustment, early deadline extension, and slot swap-
ping. We have not fully implemented the admission control re-

quirements and do not yet bill entirely correctly for the extra seeks
imposed on a stream each period.

The experiments we have run using this implementation show
that the driver delivers excellent performance. The utilization-based
admission control allows us to reserve resources for a range of ap-
plications. The driver provides isolation even in the presence of
a hard real-time stream with a short period. The deadline exten-
sion, bottleneck scheduling, and slot swapping mechanisms yield
throughput equivalent to, and occasionally better than, the tradi-
tional Linux (best-effort) disk driver.
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