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ABSTRACT

Until recently, the use of graphics processing units (GPUs)
for query processing was limited by the amount of memory
on the graphics card, a few gigabytes at best. Moreover,
input tables had to be copied to GPU memory before they
could be processed, and after computation was completed,
query results had to be copied back to CPU memory. The
newest generation of Nvidia GPUs and development tools
introduces a common memory address space, which now al-
lows the GPU to access CPU memory directly, lifting size
limitations and obviating data copy operations. We confirm
that this new technology can sustain 98 % of its nominal rate
of 6.3 GB/sec in practice, and exploit it to process database
hash joins at the same rate, i.e., the join is processed “on the
fly” as the GPU reads the input tables from CPU memory at
PCI-E speeds. Compared to the fastest published results for
in-memory joins on the CPU, this represents more than half
an order of magnitude speed-up. All of our results include
the cost of result materialization (often omitted in earlier
work), and we investigate the implications of changing join
predicate selectivity and table size.

1. INTRODUCTION

Memory bandwidth exceeding 150 GB/s and hundreds of
cores make GPUs an interesting platform for accelerating
complex query processing tasks such as joins. Nvidia’s Com-
pute Unified Device Architecture (CUDA), an extension of
the C programming language, simplifies programming GPUs
for applications other than graphics [6]. However, the use
of GPUs for data-intensive operations has been limited by
the amount of memory on the GPU card (<6GB today)
and the time-consuming process of copying data back and
forth between CPU and GPU memory across a PCI Ezpress
(PCI-E) link with limited bandwidth (<6.3 GB/s today).

Though earlier investigations exploring the use of GPUs
for join processing claimed orders of magnitude speedup
over CPUs [7-9], they were based on assumptions that side-
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stepped reality. They assumed that both the input tables
and the join results all fit simultaneously in the GPU’s lim-
ited memory. Often, they only measured the time to perform
the join, omitting the non-trivial transfer times from and
to CPU memory or considering them negligible, which we
found not to be the case for efficient join implementations.
While it was feasible to work around the memory limitation
by partitioning the input tables, overlapping data copies and
processing to effectively use the available PCI-E bandwidth
has proven challenging. Recent work [12] on offloading hash
probes to the GPU identified data copying as the dominant
cost (> 50%) that limited effective throughput to 50 % of
the available PCI-E bandwidth.

The latest generation of Nvidia GPUs and development
tools adds a common address space for the CPU and GPU
called Unified Virtual Addressing (UVA), which allows the
GPU to access the CPU-side memory directly. This not
only lifts the size limitations on data sets that can be pro-
cessed, but also relieves the programmer from the burden
of managing two address spaces and copying data back and
forth. More importantly, UVA can sustain 98 % of the nom-
inal rate of PCI-E; we measured 6.2 GB/s in practice. UVA
enables the GPU to process arbitrarily large tables in CPU
memory at PCI-E speeds, without managing data transfers
or multiple copies.

This paper shows how UVA can be leveraged to acceler-
ate database join processing, achieving throughput rates of
up to 6.1 GB/s, making optimal use of the available PCI-
E bandwidth (Sec. 3). This amounts to a speedup of more
than half an order of magnitude compared to previously pub-
lished results for in-memory join operations on the CPU [10].
We provide an end-to-end performance analysis of relational
joins on GPUs, i.e., including the cost of reading the input
data sets from CPU memory and materializing results. Our
GPU results concur with prior work on in-memory joins on
the CPU [3] that a conventional (non-partitioned) hash join
works best, due to its simplicity. We also analyze the sen-
sitivity of our implementation to table size and join pred-
icate selectivity. Our results show that the table size has
marginal impact upon throughput, whereas selectivity of the
join predicate significantly affects performance (Sec. 4). We
propose a result cache to accelerate joins that produce a
large number of results. Since the performance of database
operations is known to be dominated by memory perfor-
mance [1,4], we provide a detailed evaluation of GPU mem-
ory performance exploiting UVA (Appendix A, B).

2. GPU BACKGROUND

This section provides a brief tutorial on GPU architecture
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Figure 1: Architecture of an Nvidia GPU.

and the new UVA enhancement, as it pertains to database
joins. For a more detailed discussion of relevant memory
access patterns, please refer to the Appendix.

A GPU application written for CUDA consists of two
parts: a “control” thread running on the host (CPU) and a
parallel part, called a kernel, running on the GPU. The ker-
nel is organized as a number of thread blocks, with each block
running all its threads on the CUDA cores of one stream-
ing multiprocessor (SM), see Figure 1. CUDA cores within
the same SM execute the same instruction in lockstep, in
Single Instruction-Multiple Data (SIMD) mode. Threads
within the same thread block can access a low-latency on-
chip shared memory on an SM. For example, the GTX 580
GPU we use in our experiments has 16 SMs, and each SM
has 32 CUDA cores and 48 kB of shared memory.

Host memory acces®ata is transferred between the host
memory and the GPU over a PCI-E link, which puts an up-
per bound on the throughput of data-intensive operations.
Before UVA was introduced with Nvidia’s Fermi architecture
and CUDA 4.0, this had to be done through explicit host-
initiated cudaMemcpy () calls, hereafeter referred to as mem-
cpy. Now, UVA allows a compute kernel to directly access
host memory, which is fetched over the PCI-E link as needed.
The concept of UVA is illustrated in Figure 2. In step (1),
the CPU thread of a CUDA application pins a page in host
to obtain a real address pointer to this page from the oper-
ating system. This real address pointer is then passed to the
GPU during the kernel invocation. In step (2), the CUDA
threads can now issue load and store instructions using this
real address pointer. The memory controller on the GPU
distinguishes this access from requests to the device mem-
ory and performs the corresponding memory read or write
transaction over the PCI-E link. The PCI Express Root
Complex on the host side then issues an access to the host
memory. The 16x PCI-E 2.x connection of our GPU has a
nominal bandwidth of 6.3 GB/s. We measured an effective
bandwidth of 6.2 GB/s for 64-bit read and write accesses to
host memory through UVA. Our measurements show that at
least 1,024 threads and 16 blocks are required (Appendix B),
which places a lower bound on the parallelism required for
an efficient hash join implementation.

Device memory accessash joins are known to produce
irregular memory access patterns during parallel hash ta-
ble creation and probing. In particular, compare-and-swap
for inserting tuples into the hash table and quasi-random,
data dependent reads for hash table probes are problematic.
On our GTX 580 GPU we measured 7.7 GB/s for 64-bit
random read accesses to 512 MB of device memory. For 64-
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Figure 2: UVA Read access from the GPU Kernel
into host memory. (1) CPU thread pins page. (2)
CUDA threads execute a load or store instruction,
which results in a memory read or write transaction
on the PCI-E link to the pinned page.

bit compare-and-swap accesses to random locations we mea-
sured 4.6 GB/s. To achieve these bandwidths the compute
kernel needs to be launched with at least 16 thread blocks
and at least 8 threads/block (Appendix A).

3. IMPLEMENTATION APPROACHES

To determine the optimal join algorithm for GPUs, we
ported the best known in-memory join algorithms from re-
cent studies of CPU joins: a traditional hash join [3] and a
partitioned variant of hash join. The latter algorithm parti-
tions the hashed values of the input keys in such a way that
each partition fits into the processor cache, to avoid random
accesses to memory when joining each partition [10]. We
then evaluated both hash algorithms, first explicitly copying
data from and to the CPU, and secondly exploiting UVA.
Our GPU implementation of a conventional (parallelized)
hash join using UVA outperformed all other approaches and
achieved half an order of magnitude speed-up over the par-
titioned CPU hash join.

Implementation DetailsOur parallel join implementations
on the GPU do not differ fundamentally from their CPU
counterparts. The core algorithms are identical, but the par-
allelization, data placement, and intermediate data struc-
tures are GPU-specific. For example, in the partitioned hash
join, the GPU’s 48 kB of shared memory takes over the role
of the CPU ’s caches. The remaining parameters are the
same as in prior work [3,10] to allow performance compar-
isons. For example, we use the least significant bits (LSB) of
the input key as the hash function, and an open addressing
hash table two times the size of the input table.

Similar to a conventional CPU hash join implementation,
we create a hash table from the build table and then probe it
with the entries from the probe table. As in earlier work [2,9],
we build the hash table in the device memory of the GPU. As
discussed in Section 2, achieving high throughput requires
a high degree of thread parallelism. For example, accessing
the input tables located in host memory requires at least 1k
threads to be efficient. Obviously, this requires coordinating
write access to shared data structures. We use atomic oper-
ations to efficiently coordinate multiple threads concurrently
inserting data into the hash table, e.g., compare-and-swap,
and into the result set, e.g., an index that is incremented
atomically.

Using pre-UVA techniques that perform memcpy opera-



tions, a conventional hash join algorithm copies the build
table from host to device memory, creates a hash table in
device memory, deletes the build table from device memory,
copies the probe table to device memory, probes the hash
table, stores the results in device memory, and finally copies
them back to host memory. This approach is limited by the
combined size of its working data, i.e., the build table (or
horizontal partition thereof) and its hash table during build,
and during probe the hash table, probe table (or horizon-
tal partition thereof), and results all must simultaneously fit
into device memory. It also requires passing control of the
program execution back and forth between the GPU and
CPU, as memcpy operations are controlled by the CPU.

Using UVA, the GPU can read the build table directly
from host memory while it creates the hash table in device
memory, so it never has to store the build table in the device
memory. The probe phase reads the rows of the probe table
directly from host memory, probes the hash table stored in
device memory, and again stores the results directly in host
memory. The only limiting factor is the size of the hash
table, which has to fit into device memory (<6 GB). Just as
a CPU join may have to spill portions of its hash table to
disk if it exceeds memory, the GPU may have to spill its hash
table to host memory using UVA. Implementing support for
larger hash tables and evaluating the impact of spilling on
performance is future work.

The partitioned hash join described by Kim et al. [10]
can also be ported to the GPU with relatively few modifi-
cations. The histogram(s) that are used to determine the
target location of data in the partitioned data set can be
created in shared memory to avoid the performance penal-
ties of frequent device memory accesses. The size of shared
memory (48kB) limits the number of partitions that can be
processed in one pass to 12k (48kB / 4 bytes per histogram
entry) and the partition size to 16 kB (assuming a conserva-
tive 50% load factor for the hash table). Therefore, tables
larger than 192 MB require multi-phase partitioning.

Data Sets.To compare our results with prior work [3,10],
we join two equally sized tables, with tuples comprised of a
32-bit key and a 32-bit row identifier. Choosing two tables
of equal size represents the worst case scenario for a hash
join, as the hash table is usually created from the smaller of
the two tables, to optimize memory consumption and perfor-
mance. We use a uniformly distributed, randomly generated
data set, again the worst case scenario, as there will be no
locality of reference.

We control the result size by varying the match rate of the
join predicate, which is defined as the percentage of keys in
the probe table that have matching key(s) in the build ta-
ble. ! Low match rates correspond to joining domains that
barely intersect, whereas referential integrity would guaran-
tee a 100 % match rate. We generate the data set such that
for each tuple in the probe table, we either randomly select
a tuple from the build table or generate a random value that
is outside of the key space, according to the match rate. If
both tables were simply filled with randomly-generated 32-
bit integers, as done by some papers, the match rate could
not be controlled, and would be unrealistically low, based
upon the probability of generating the same random 32-bit

I Though other papers have called this “selectivity”, it is very
different from selectivity as used in the query optimization
literature. We use it only so we can compare our results to
prior work.

integer in both tables. Other than one experiment that ex-
plicitly examines the impact of varying the match rate on
performance, our evaluation uses a match rate fixed at 3 %,
to be compatible with prior work [10], though we believe it
to be unrealistic.
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Figure 3: Comparing the runtime of conventional
and partitioned hash join implementations, using
data copies vs. a uniform address space.

Conventional vs. Partitioned Hash Joilsing the tra-
ditional GPU programming approach that requires data co-
pies, conventional and partitioned hash joins achieve nearly
identical performance. Figure 3(a) and (b) show the exe-
cution time per tuple in GPU cycles (left y-axis) and CPU
cycles (right y-axis)? for increasing number of tuples joined,
i.e., the combined size of the build and probe tables. Though
performance is comparable (4-5 GPU compute cycles per
tuple) for larger data sets, for smaller data sets (<512K
tuples), the conventional hash join achieves slightly better
performance (6-8 GPU cycles/tuple) than the partitioned
one (7-10 GPU cycles/tuple). Obviously, the cost of data
copies, labeled “Copy Input Tables to GPU” for transferring
the input tables and “Copy Results to CPU” for transferring
the results, are identical for both algorithms. For data sets
larger than about 8 M tuples, the cost of initiating input
data transfers is dominated by the PCI-E bandwidth, which
we measured at 2 GPU cycles/tuple or 6.1 GB/s. The same
applies to copying join results back to host memory, except
that it occurs earlier, for data sets larger than 512k tuples,
because we assumed highly selective (3 %) joins. Aside from
the cost of copying the input tables, the execution time of
a conventional hash join depends on both hash table cre-
ation (labeled “Create Hash Table”) and probing (labeled
“Probe”). The rate of hash table creation is governed by the
efficiency of compare-and-swap operations, while the speed
of probes is limited by random reads from the device mem-
ory (Appendix A). The time to read the input tables from
device memory is negligible, as these reads are coalesced and
achieve rates above 150 GB/s (Appendix A). The perfor-

2We include the latter metric to enable a direct comparison
with prior work on CPU joins, since there is a more than
2x difference between GPU (1.5 GHz) and CPU (3.4 GHz)
clock frequency.



mance of probes is directly correlated with that of random
read accesses to device memory, which decreases for data set
sizes of 256 MB or more (see Appendix A).

The partitioned hash join described by Kim et al. [10]
requires three passes over the input tables, one to create a
histogram to compute the partition boundaries, one to move
the input data to the target partitions, and one to join the
subtables. The first two are part of the “Partitioning Phase”
and the third is required for the “Join Phase”. As with con-
ventional hash join, the input data can be read from device
memory at up to 150 GB/s. However, moving data to the
partitions requires random writes, which is the dominating
cost of the partitioning phase. On the other hand, all ran-
dom accesses required by hash table creation and probing
during the join phase are to fast shared memory, as parti-
tioning is done so that a partition fits into shared memory.
Therefore, the overall cost of the join phase is relatively
small (< 1GPU cycle/tuple). The increases in execution
time for the partitioned hash join on data sets of 64 M tu-
ples (256 MB per table) and larger are the result of 2-phase
partitioning, which requires double the scans(4), but more
importantly two (random) rewrites of the data set.

Data Copy vs. UVAUsing UVA’s uniform address space
obviates data copies, since the input tables remain in host
memory and results are written directly to host memory.
UVA requires the input tables to be pinned in physical mem-
ory. While the (per tuple) cost of pinning the input tables in
host memory amortizes over larger data sets (Fig. 3(c),(d)),
reading the input tables through UVA directly from host
memory puts an upper limit on overall throughput (< PCI-
E bandwidth).

For a conventional hash join, we observe from Figure 3(c)
that using UVA to access the input tables has no impact
on hash table creation and negligible impact on probing.
Compare-and-swap operations are slower than the PCI-E
link, and so remain the limiting factor of hash table cre-
ation. However, random accesses to device memory perform
slightly better than PCI-E bandwidth, so probing is limited
by the PCI-E bandwidth.

The partitioned hash join implementation cannot take ad-
vantage of UVA (see Fig. 3(d)), as it requires several passes
over the input tables, which with UVA remain stored in
host memory. Host memory access is more than an order of
magnitude slower than device memory access—6 GB/s vs.
150 GB/s. The overall performance is almost exactly the
same as using explicit data copies, with the time previously
spent on copying the input data now included in the parti-
tioning phase. We conclude that, in the presence of UVA,
partitioning input tables does not provide an advantage over
a simple hash join implementation, an observation that con-
forms with prior results comparing CPU implementations of
these algorithms [3].

GPU vs. CPU.Our “conventional” GPU hash join using
UVA achieves an end-to-end throughput of roughly 3 com-
pute cycles per tuple (Fig. 3(c)), which is about an order of
magnitude faster than results reported from the best known
parallel CPU implementation [10] (32 CPU cycles/tuple).
However, using cycles per tuple as a metric does not permit
an “apples-to-apples” comparison, as clock frequencies differ
significantly, e.g., our GPU is clocked at 1.5 GHz, versus our
CPU at 3.4 GHz and the 3.2 GHz CPU used in [10]. Allow-
ing for the difference in clock frequency between our GPU
and CPU by comparing the vertical scale on the right of Fig-

ure 3 (measured in CPU clock cycles per tuple), our GPU
implementation is still more than half an order of magnitude
faster than the best parallel CPU implementation.

4. EXPERIMENTAL EVALUATION

Having determined the best implementation for our GPU
join to be a conventional hash join using UVA to directly
access the host memory, we now evaluate the efficiency of
that implementation, and how sensitive its performance is
to table sizes and the selectivity of the join predicate. We
also evaluate the benefit of a result cache to reduce con-
tention when materializing results. To identify inefficiencies
or bottlenecks independent of a specific machine’s architec-
ture or performance characteristics, for the remainder of this
paper we measure performance and compare it to the nom-
inal hardware capabilities in terms of throughput, i.e., the
number of input bytes processed per second.
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Figure 4: Throughput of GPU hash join with re-
spect to input table size(s), with equally sized input
tables accessed via UVA, and match rate fixed at

3 %.

Efficiency.Based on the same experiment as Figure 3(c),
Figure 4 depicts the throughput of build phase, probe phase,
and overall, end-to-end query execution as a function of the
size of the input tables. The end-to-end throughput is the
geometric mean of the two stages of our hash join — hash
table build and probe. We observe an overall performance of
up to 4.6 GB/s, and little sensitivity to the table sizes. Hash
table probes can be executed at up to 6.1 GB/s, the maxi-
mum rate at which the probe table can be accessed across
the PCI-E link (Appendix B), while hash table creation is
significantly slower, reaching at most 3.9 GB/s. The limit-
ing factor for parallel hash table creation is the locking re-
quired to prevent parallel threads from overwriting existing
hash table entries. Our implementation uses compare-and-
swap to manage concurrent hash table access (Sec. 3). The
18 % performance difference between the resulting hash ta-
ble build rate (3.9 GB/sec) and compare-and-swap through-
put (4.6 GB/s) can be attributed to the time necessary to
initialize the hash table and to resolve hash collisions. In
fact, excluding the time it takes to initialize the hash table,
we measured hash table creation rates up to 4.1 GB/s, and

3Running the partitioned CPU hash join on our quad-core
i7 Sandy Bridge CPU, making use of all of its eight hardware
threads, we observe a 20% performance improvement over
the previous CPU generation [10].
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with a perfect hash that produces no collisions® we observe

rates up to 4.5 GB/s, close to optimal.

Match Rate.The previous experiments used a match rate
of 3%, which made the time to write these few results back
to host memory negligible, compared to the time required
to read the probe table from memory. Other work on in-
memory joins on the CPU suggests that the time required
to materialize join results can be neglected, as it only adds a
constant overhead of a few compute cycles per result (3,10,
11]. However, given that our best GPU join implementation
requires only 3 cycles per tuple (Fig. 3(c)), a few extra cy-
cles can add substantial overhead when more probes return
results.

Figure 5 confirms that join predicates that have a higher
percentage of matches significantly reduce GPU join through-
put. We ran a conventional hash join, labeled “End-to-End
(UVA)”, for data sets of 16 M tuples per table accessed via
UVA, and varied the match rate from 1% to 100 %. Though
earlier papers assumed a very optimistic match rate of 3 %,
the more common situation of a join between a foreign key
and a primary key would result in a 100 % match rate. > For
join predicates having match rates less than 5 %, throughput
is high, but beyond this point the throughput drops steeply
from 4.6 GB/s to 1 GB/s.

When the join predicate has a low match rate, overall
throughput was limited by hash table creation, labeled “Cre-
ate Hash Table” in Figure 5, but as the match rate increases,
throughput becomes dominated by the probe phase, labeled
“Probe (UVA) 7. Obviously, the join predicate’s match rate
does not impact hash table creation, so we will limit further
investigation to the performance of hash table probes.

Although PCI-E is bidirectional, the GPU we used in our
test system can only transfer data in one direction at a time,
as it only has one DMA engine. ¢ To determine the perfor-
mance impact of simultaneously probing the hash table and

4For the LSB hash we are using for our experiments, creating
a build table with consecutive even or odd integers as keys
satisfies this condition.

5We are only considering the effect of the join predicate
itself, and assume that any predicates local to individual
tables have already been applied.

5Professional video cards like Nvidia’s Quadro series or spe-
cialized GPU compute cards like the Tesla series have two
DMA engines enabling bidirectional use of the PCI-E link.

transferring results across the PCI-E link, we repeated the
experiment above with input tables stored in device memory
and results written to device memory as well. To our sur-
prise, the curve labeled “Probe (memcpy)” in Figure 5 shows
that using device memory exclusively provides only marginal
improvements over UVA, which indicates that UVA is not a
bottleneck here.

Our measurements in Appendix B show that we need to
launch at least 1k threads to make efficient use of the avail-
able PCI-E bandwidth. The less selective the join predicate
is, the more of these 1 k GPU threads that will find a match
and will need to write its result contiguously to host memory
at the same time, inevitably creating contention for the write
coordinator. Although we coordinate writes as efficiently as
possible, using an index on an array that is incremented
atomically, as join match rates approach 100 %, 1k threads
access this index simultaneously, creating a bottleneck.

Result CacheReducing the number of threads attempt-
ing to write results to the same data structure will reduce
this contention. To accomplish this, we implemented a re-
sult cache that uses on-chip shared memory (cf. Fig. 1) to
stage results before they are written to host memory. With
this cache, we only need to coordinate the writes of threads
within a single block, as only they have access to the same
shared memory (on the same SM). Moreover, once the re-
sult cache fills up, we use all of those threads to write (flush)
the cached results in parallel, which allows for efficient co-
alesced writes. On the downside, every time we flush the
result cache, we need to synchronize all threads within that
block before we can write its content back to host memory.
Since shared memory and therefore our cache is limited to
48 kB, for joins with high match rates we have to flush the
cache more frequently, which again requires an atomic op-
eration on the UVA-accessible memory. Nevertheless, our
result cache reduces the pressure on the atomic insert into
the result table by more than three orders of magnitude, as
we can cache up to 6k results.

Our result cache doubled the throughputs of probe and
overall, labeled “Probe (UVA), Result Cache” and "End-to-
End (UVA), Result Cache”, respectively, in Figure 5. Al-
though the result cache marginally reduces overall through-
put for joins with match rates < 10 %, the result cache im-
proves throughput thereafter, with more gradual decreases
from > 4GB/s for 10% match rate to 3GB/s for 50%
match rate. Even for 100 % match rates, our implementation
still achieves 2 GB/s end-to-end throughput, which is nearly
three times faster than the fastest reported in-memory CPU
join [10]77 which assumed a very optimistic 3 % match rate
and did not include the cost of result materialization in its
performance evaluation.

Operator Pipelining.Prior work on GPU joins [12] sug-
gests that a join is often followed by a group by (and ag-
gregate) operator. Pipelining the join results into the group
by operator so that the same set of threads will handle the
aggregation as well, avoids materializing the results in host
memory and the locking associated with it. The curve la-
beled “Join & Group By” in Figure 5 depicts a scenario in
which each thread computes a local aggregate at its end and
is added to a global aggregate located in host memory using
an atomic add. For this scenario, overall throughput grad-

732 cycles/8-byte tuple at 3.2 GHz are the equivalent of
0.75 GB/s.



ually decreases from 4.6 GB/s for match rates of 1-5% to
3.6GB/s for 100 %.
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Figure 6: Throughput of GPU hash join for increas-
ing input table sizes, tables accessed via UVA and
match rate fixed at 3 %.

Table dimensionsWhile our prior experiments focused on
the worst case scenario for (hash) joins, i.e., building and
probing tables of equal size, we now take a look at the com-
mon case in which the build table is smaller than the probe
table [3]. Figure 6 depicts the performance of our GPU
join implementation for build tables of size 1, 4, 16, and
64 million tuples, with increasing probe table size from one
million to one billion tuples, and a constant match rate of
3%. The rates of hash table creation (labeled “Create Hash
Table”) and probe (labeled “Probe”) are virtually constant
at 3.9 GB/s for building hash tables for 1M, 4M, 16 M tu-
ples, and 6 GB/s for probes, independent of the probe table
size. The overall throughput (labeled “End-to-End”) is the
geometric mean of the two, weighted by the number of tu-
ples. Hence, with increasing probe table size, performance
becomes dominated by probing.

Figures 6(c) and (d) leave the impression that for smaller
probe tables, performance is dominated by hash table cre-
ation. This is an artifact of using the same range for probe
table sizes across all experiments (a—d), and always creating
the hash table based on the table identified as the build ta-
ble, regardless of size. Typically, an optimizer would choose
the smaller table to build the hash table, both to save mem-
ory and because the hash table creation rate is slower than
the probe rate. For example, building a hash table on a
16 M-tuple table and probing it with a table with 1M tu-
ples reduces overall throughput to the rate of hash table
creation, 3.9 GB.s, as shown in Fig. 6(c). Conversely, build-
ing a hash table on the 1 M-tuple table and probing it with
the table with 16 M tuples yields far better performance of
6 GB/s, as shown in Fig. 6(a). The grayed-out areas in Fig-
ure 6 mark table-size combinations that an optimizer would
reject as sub-optimal, in favor of exchanging the build and
probe tables to get better throughput.

5. CONCLUSIONS

In this paper we have shown how to efficiently offload
large-scale relational join operations to the GPU, achieving a

sustained overall throughput of 2 GB/s to 6.1 GB/s depend-
ing upon the size of the result set. This corresponds to 3—-8x
performance improvement over the fastest reported imple-
mentation on CPUs [10]. Adjusting for the current CPU
generation still leaves us with more than half an order of
magnitude speed-up. UVA allows us to achieve throughput
rates close to the hardware capabilities, without requiring
any hand tuning. Moreover, the input tables remain in host
memory, obviating the need to manage data copies. In the
typical scenario for a hash join, i.e., when the probe table
is larger than the build table, our GPU hash join imple-
mentation was able to achieve 96 % utilization of the PCI-
E generation 2 bandwidth (6.3 GB/s). PCI-E generation 3
doubles that bandwidth, and we expect the next generation
GPUs to be able to take advantage of it. Future work in-
cludes support for handling larger data sets, e.g., spilling
large hash tables to CPU memory and reading input tables
from external storage, and processing more complex queries.
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Table 1: Measured Bandwidth to Device Memory
on the GTX 580 (512 MB accessed by 1,024 blocks
with 1,024 threads/block).

Bandwidth GB/s

non-
coalesced coalesced random
READ 32 bit 122 4.8 3.8
(data-dep.) 64 bit 151 10 7.7
READ 32 bit 119 4.8 3.8
(data-indep.) 64 bit 152 10 7.7
WRITE 32-bit 144 5.4 3.8
64 bit 155 11 7.7
CAs 32-bit 8.6 2.4 2.3
64 bit 11 4.9 4.6
APPENDI X

System ConfigurationThroughout our experiments, we
use a high-end consumer graphics card, a GeForce GTX 580.
Its GF110 core is clocked at 1.54 GHz and encompasses 512
CUDA cores in 16 streaming multiprocessors with 32 CUDA
cores each, and has access to 3 GB of GDDR5 device mem-
ory. The card was installed in a system with an Intel Core
i7-2600 Sandy Bridge CPU clocked at 3.4 GHz and 16 GB
of DDR3-1333 memory. We ran Suse Enterprise Linux 11.1
with a 2.6.32 kernel Nvidia graphics driver 285.33, and CUDA
toolkit 4.1 installed. The system was dedicated to the exper-
iments, i.e., with no other users or applications active. The
video output on the GTX 580 was disabled and system’s
video output was handled by another graphics card.

A. DEVICE MEMORY ACCESS

Table 1 shows the measured bandwidth to the 3,072 MB
device memory on the GTX 580 for different access pat-
terns. The table reflects the well-known property of GPU
memory; the effective bandwidth highly depends on the pat-
tern and the type of memory access. In coalesced mem-
ory access, adjacent threads are accessing adjacent mem-
ory locations, e.g., thread t references memory location m,
thread ¢ + 1 location m + 1, etc. Non-coalesced accesses,
e.g., where a single thread t¢ references consecutive locations
m,m-+1,...,m+ k — 1 should be avoided since they result
in 15-25% lower memory throughput.

In this setting, we are considering read, write, as well as
atomic compare-and-swap (CAS, atomicCAS()) operations
on 32- and 64-bit data. Reads are further divided in data-
dependent and data-independent accesses. In the former,
the next memory location accessed depends on the content of
the currently accessed location. Such a pattern is exhibited,
for example, when traversing a linked list.

For our join implementation random access operations,
that occur when accessing hash table entries, are of partic-
ular interest. Random CAS is used to coordinate the insert
operations done concurrently by hundreds of threads during
the create phase of the hash table. The random read hap-
pens during the probe phase of the hash join when the key
and payload entries are looked up in the hash table. For
64-bit random accesses we note a peak bandwidth for reads
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Figure 7: Measured bandwidth of 64-bit accesses to
random locations within 512 MB of device memory
on the GTX 580.

of 7.7GB/s and 4.6 GB/s for CAS.®

Figures 7(a) and 7(b) show the measured aggregate read
and CAS bandwidth that can be obtained for different GPU
thread configurations. In CUDA, a compute kernel running
on the GPU is always executed in a grid of thread blocks.
In particular, a thread block is mapped to one streaming
multi-processor, and therefore, all threads of that blocks are
executed by the CUDA cores on this multi-processor. The
figures show that for both read and CAS a minimum num-
ber of thread blocks and threads/block is needed to achieve
maximum performance. For reads and CAS at least 16
blocks have to be scheduled to achieve a peak bandwidth
of 7.7GB/s and 4.6 GB/s. This requirement is quite obvi-
ous; starting with 16 blocks all 16 multi-processor are used.
Inside of a thread block we need at least 8 threads on this
GPU to reach peak bandwidth for reads and CASs.

Similar to SMT in traditional CPUs, memory latency can
be hidden by mapping more parallel activity on a core. In
this case, while one thread (warp of threads) is waiting for
data another thread (warp of threads) can be executed. La-
tency can be hidden (and throughput improved) when an-
other thread is executed in the meantime. This interleaving
can be applied all the way down to the actual DRAM ac-
cess, where a column access in a bank can be interleaved
with opening a new row in another currently idle bank.

The diagonals in Figures 7(a) and 7(b) correspond to a
total of 1,024 threads. Hence, having accesses of at least
1,024 threads in-flight is necessary to keep all queues in the
memory controller full. We cannot observe any degradation
as we move towards the upper right corner in the figures
by increasing the total number of threads. For this reason
we can further increase the number of threads/block and
block count in our join implementation as needed. In more
complex GPU kernels than those used in these benchmarks,
other resource constraints limit the number of blocks and
threads/block that can be executed concurrently due to the
register usage of a thread and the shared memory require-
ment of a block.

In Figure 8 we show the measured bandwidth for differ-

8For comparison to a CPU, the quad-core Sandy Bridge i7-
2600 with DDR3-1333 memory in our experiments has an
aggregate bandwidth of 700 MB/s for random 64-bit reads
and 380 MB/s for 64-bit CAS using 8 threads.
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Figure 9: Measured bandwidth of 64-bit coalesced
accesses to host memory using UVA for different
CUDA grid and block configurations.

ent random access patterns for different amounts of allo-
cated device memory. An interesting observation on our
3GB GTX 580 is the bandwidth drop for random reads at
256 MB and a further sharp drop for all patterns when more
than 2 GB/s are randomly accessed. We are unable to ex-
plain this behavior using publicly available data. However,
we believe that the following provides an explanation for the
performance drop in Figure 4 for table sizes > 32 M tuple:
If the GPU uses a common queue for both device memory
and UVA accesses, the bandwidth drop for device memory
accesses could slow down the UVA access and reduce the
overall throughput even though the actual device memory
bandwidth is still well above the PCI-E limit.

B. HOST MEMORY ACCESS

For the hash join algorithm UVA-based memory accesses
is used in both the create and the probe phase to read the in-
put tuples. The join results are written back to host memory
via UVA as well. In both cases, memory accesses are coa-
lesced. Figures 9(a) and 9(b) show the memory bandwidth
for 64-bit read and write access to host memory through
UVA for different thread configurations. We are able to ob-
tain a sustained throughput of 6.17 GB/s for both access
types. The figures show that in order to achieve peak band-
width, at least 16 threads/block need to be used. This can
be explained by the DMA transfer sizes supported by the
GPU. The PCI-E endpoint of the GTX 580 supports a max-
imum payload size of 128 bytes in PCI-E Transaction Level
Packets®. Using 16 threads, 16 x 64-bit requests translate
into full 128 bytes payloads in the PCI-E packets. The diag-
onals (cf. Fig. 9) correspond to total of 1,024 threads that
are required to achieve peak bandwidth. In other words,
having accesses of at least 1,024 threads in-flight is required
to keep the memory queues filled. Figures 9(a) and 9(b)
show that we cannot observe any degradation as we move
towards the upper right corner, and the total number of
threads increases.

The measured bandwidth is close to the theoretical peak
bandwidth for a 16-lane PCI-E generation 2 device as the fol-
lowing simple calculation shows: A single PCI-E generation
2 lane operates at 5 GT/s. Given the 8b/10b symbol encod-
ing used in the PCI-E physical link, the nominal bandwidth
thus is 500 x 10°B/s for a single lane and 8 x 10° B/s for
all 16 lanes. With a 24 byte packet overhead,'® the packet
sent for a single 128-byte request is 152 bytes in size [5], and
hence, the theoretical peak-bandwidth 8 x 10° B/s x 128/152 a
6.27 GB/s. The results in Figures 9(a) and 9(b) show that
the measured bandwidth is 98 % of the theoretical peak
value.

9The maximum payload size in a transaction level packet
supported by a PCI-E device can be read from the Device
Capability Register, for example, using 1spci -vv.

0For a 24 byte packet overhead we assume that 64-bit host
addresses are used without the optional end-to-end CRC
field.



