
Memory Matters

Tim Kaldewey1,2, Andrea Di Blas1,2, Jeff Hagen2, Eric Sedlar2, Scott Brandt1
1Computer Science & Engineering, University of California Santa Cruz

{kalt, andrea, scott}@soe.ucsc.edu
2Oracle Server Technologies – Special Projects

{tim.kaldewey, andrea.di.blas, jeff.hagen, eric.sedlar}@oracle.com

Abstract
When predicting application performance, allocating re-

sources, and scheduling jobs, an accurate estimate of the
required resources is essential. Although CPU and disk
performance is relatively well understood, memory perfor-
mance is often ignored or considered constant. Our re-
search shows that memory bandwidth can vary by up to
two orders of magnitude depending upon access pattern,
read/write ratio, and number of cores accessing the mem-
ory. We believe that resource management can be im-
proved by accounting for these factors, especially for data-
intensive applications.

1 Introduction
Real-time resource management depends upon knowl-

edge of the resources needed for each task. Significant re-
search has been performed on WCET estimation, admis-
sion control, and scheduling with a strong focus on CPU
performance requirements. Newer research has examined
real-time resource management for networking [8] and disk
I/O [9]. Relatively little research has focused on the impact
of memory performance for three primary reasons: memory
bandwidth is assumed to be constant; variations in mem-
ory bandwidth are thought to be small; and it has been as-
sumed that real-time processing is generally not memory-
bandwidth bound.
With the rapidly decreasing costs of memory and stor-

age, applications manage increasingly large volumes of data
and real-time and non-real-time processing naturally be-
comes more data-intensive. Rapidly growing main memory
sizes eliminate disk I/O as a bottleneck even for tradition-
ally data-intensive applications, e.g. databases. In-memory
databases [3, 13] put main memory performance in the spot-
light.
High-definition video processing, image processing,

real-time data collection and analysis, and other applica-
tions similarly put an increasing burden on the memory.
Making matters worse, server virtualization, service

level agreements, and other types of QoS now require many

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 core
4 cores

Av
er

ag
e

M
em

or
y

Ba
nd

wi
dt

h
[G

B/
s]

random write
random read

sequential write
sequential read

Figure 1: Measured memory bandwidth on a quad-core CPU for
different access patterns.

traditionally best-effort applications to be managed accord-
ing to real-time principles. With processor performance
increasing much faster than memory performance, mem-
ory has become the bottleneck for many data-intensive ap-
plications. This issue was already of concern to com-
puter architects more than a decade ago: “It’s the Memory,
Stupid!” [12].
We decided to investigate the relationship between ap-

plication behavior and memory performance. We show
the effects of data access pattern, read/write ratio, data
types, and number of concurrently active cores/threads. To
our surprise, every single one of these has an impact on
memory performance, some in the opposite way than ex-
pected (Fig. 1).
While memory access time increases linearly with the

amount of data accessed, we found that sequential access
patterns yield an order of magnitude higher memory band-
width than random accesses. The use of larger data types
yields more than an order of magnitude speedup. In gen-
eral, performance increases with the number of cores.
Overall, we found two orders of magnitude difference

between best- and worst-case memory performance. We
believe this must be accounted for in resource estimation,
provisioning, allocation, and scheduling of data-intensive

 0.1

 1

 10

 100

 1 10 100

tim
e

[m
s]

data accessed [MB]

sequential read
sequential write

random read
random write

Figure 2: Execution times for accessing increasing amounts of
memory using 8-bit data types. Other data types show the same
behavior.

applications.

2 Dissecting Memory Performance
After establishing that access time is proportional to the

amount of memory accessed, we evaluate memory band-
width along three axes: access pattern, data type, and the
number of cores and threads concurrently accessing the
memory

Experimental setup. Experiments were conducted on an
x86 system running Oracle Enterprise Linux 5.2 64-bit,
Kernel 2.6.18. The hardware consisted of an Asus P5Q
mainboard with an Intel P45 chipset, an Intel Core 2 Quad
Q6700 CPU 2.66 GHz, and 2 GB of DDR2-1066 RAMwith
5-5-5-15 latency. The system was dedicated to the experi-
ments; no other applications or users were active.
Measurements were conducted in user space with the

gettimeofday() function, to include all overhead a real
application would incur when accessing memory. The C
and Assembly code used to generate the desired memory
access patterns was designed to minimize computational
overhead: reads add the requested memory value to a reg-
ister variable; writes write the sum of 2 registers to mem-
ory; (pseudo) random memory locations are generated us-
ing an inline function; and aggressive compiler optimiza-
tions turned on (gcc -O4).
Memory accesses are always aligned to the respective

word size boundaries, i.e. all n-byte words are aligned to n-
byte boundaries. In order to avoid caching effects for small
data sets or paging to disk for large data sets, all experiments
allocate exactly 512 MB of memory. When the amount
of memory accessed exceeds 512 MB, we iterate over the
memory. When using multiple threads, each thread is as-
signed its own memory to eliminate any potential caching
effects due to locality of reference.

Amount of memory accessed. Our first set of experi-
ments shows that the time required to access main memory
is nearly linear in the amount of memory requested (Fig. 2).
Using a single CPU core we measured the access time for
requests ranging from 512 KB up to 32 GB with different
access patterns. Figure 2 shows results for 8-bit character
data types. Results were similar across data types, e.g. 32-
bit, 64-bit and 128-bit. Therefore, we use bandwidth as the
metric for the remaining experiments.

Data Types. The size of data types accessed has a ma-
jor impact on memory performance. Figure 3a shows more
than an order of magnitude difference in memory bandwidth
between small and large data types for random access pat-
terns, and 2–4×, for sequential access patterns.
Smaller data types require more memory operations to

access the same amount of memory. Thus, for a given
amount of memory, random accesses of smaller data types
experience a higher degree of randomness than larger data
types. As a result, random access bandwidth increases pro-
portionally to data type sizes. For example, 128-bit random
accesses receive twice the bandwidth of 64-bit ones. Se-
quential access patterns are less dependent on data types
as sequential access patterns benefit from prefetching, om-
nipresent in caches. However, the 2–4× performance drop
for 8-bit data types shows a limitation of the memory con-
troller, i.e. the number of outstanding requests, which logi-
cally increases by 4× when comparing 32-bit and 8-bit data
type accesses.
As we normalize the size of accesses to the largest data

type, (i.e. comparing a 128-bit access with two sequential
64-bit, four sequential 32-bit, or sixteen sequential 8-bit ac-
cesses) the randomness is the same across data types. As
one would expect, random access performance is now simi-
lar across data types (Fig. 3b). While the bandwidth of 8-bit
sequential writes is now similar to the other data types, there
remains a 3× performance difference for reads.

Access Pattern. Although memory is often referred to as
Random Access Memory, memory access patterns, includ-
ing read-write ratio, affect memory bandwidth. Figure 3b
shows the effect of different memory access patterns, with
the effects of different data types (mostly) eliminated by
normalization as discussed above. The bandwidth for se-
quential accesses is up to one order of magnitude larger than
random ones, i.e. 13× when reading from memory and up
to 5× when writing to memory.
The 2.5× difference between sequential read and write

bandwidth is surprising, as from the perspective of the phys-
ical DRAMmemory module, read and write operations take
approximately the same amount of time. To understand why
writes take about twice as long as reads it is necessary to
look at the way the cache is integrated into the memory sub-
system.

 0

 1

 2

 3

 4

 5

 6

random write

random read

sequential write

sequential read

M
em

or
y

Ba
nd

wi
dt

h
[G

B/
s]

8bit
32bit
64bit

128bit

 0

 1

 2

 3

 4

 5

 6

random write

random read

sequential write

sequential read

M
em

or
y

Ba
nd

wi
dt

h
[G

B/
s]

8bit
32bit
64bit

128bit

(a) Individual data-type sized accesses (b) Accesses normalized to 128-bit

Figure 3: Memory Bandwidth for different access patterns. Values are averaged from accessing amounts of 512 KB up to 32 GB.

All data transfers to and from memory will always trans-
fer an amount of data equal to a cache line, 128 bytes in our
system. When the CPU reads a word of any size, the whole
128-byte line containing the requested word will be read
from memory into the cache. If the CPU then requests mul-
tiple words within the same line, as in a sequential access
pattern, there is no need for additional memory transfers
since the subsequent words are already in the cache.
This strategy, designed to exploit spacial locality, makes

writes more complex. The CPU can only modify part of a
cache line at a time, as it is impossible to write 128 bytes
with a single machine instruction. But since transfers to
main memory require writing a full 128-byte cache line, be-
fore modifying a word in a certain cache line it is necessary
to first read that full line into the cache. There it can be
modified in any part before being written back to memory.
Therefore a write operation will in practice involve both a
read and a write, approximately doubling the access time.

Concurrency All recently released CPUs comprise mul-
tiple cores, and multi-threading is omnipresent, so we in-
vestigated their effects on memory performance. As the in-
creased number of memory requests due to small data types
had a significant impact on memory bandwidth, one would
expect similar results from multiple cores issuing requests
in parallel. Multiple concurrent threads issuing sequential
requests may together produce a random access pattern with
correspondingly poor performance. Surprisingly, perfor-
mance generally improves with multiple cores. Increasing
the number of threads beyond the number of available cores
had a negligible effect on memory performance.
For this experiment we measured the memory band-

width for increasing numbers of threads accessing 32GB
total, each thread operating on its private memory to elim-
inate caching effects caused by locality of reference across
threads. Random accesses and sequential 8-bit reads bene-
fit from multithreading, with bandwidth increasing propor-
tionally to the number of active threads up to the number of
available cores (Fig. 4). The performance gains for sequen-

tial writes using larger data types are small, as the band-
width for a single core is already close to peak performance.
Multiple cores implies multiple memory controllers,

each with its own queue for handling cache misses. Thus,
we see bandwidth increase proportional to the number of
cores where this was the bottleneck: random accesses and
8-bit sequential reads.
The peak bandwidth measured using 128-bit sequential

accesses and all four cores was 7.5GB/s. Although the the-
oretical bandwidth of the memory in our system is approx-
imately twice as much, we were unable to achieve higher
performance despite trying several optimizations.

3 Related work
Computer architects have been trying to overcome

the CPU-memory performance gap for decades. It
was first identified as the “von Neumann bottleneck” in
1977 [2] which was ameliorated by incorporating caches
and prefetching in newer CPU generations. With the ever-
widening gap between CPU and memory performance, in
the mid-90’s the term “memory wall” was coined [14]
which remains an accurate description of the situation to-
day [7].
Within the database community, memory performance

was identified as a bottleneck a decade ago [1]. Optimiza-
tions such as data structures aligned with cache lines [11]
and using larger, native vector data types [15] have been
proposed to increase memory performance. However,
scheduling queries based on their predicted memory behav-
ior to optimize memory performance and providing perfor-
mance guarantees has not yet been attempted.
Relatively little real-time research has tackled the mem-

ory system. Marchand et al. [6] suggest tightly managing
the available amount of memory in order to allow real-time
performance guarantees with virtual memory. Fisher et al.
suggest including cache space constraints in the scheduling
decisions to avoid performance degradation due to thrash-
ing [5]. Calandrino et al. provide heuristics to improve

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10

Ba
nd

wi
dt

h
[G

B/
s]

Number of Threads

sequential read
sequential write

random read
random write

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10

Ba
nd

wi
dt

h
[G

B/
s]

Number of Threads

sequential read
sequential write

random read
random write

(a) 32-bit data types (64-,128-bit are identical) (b) 8-bit data type

Figure 4: Memory bandwidth with increasing number of threads. 32GB read total.

co-scheduling tasks competing for cache space in multicore
CPUs [4]. Worst case execution time analysis has shown
that it is possible to account for locality of reference [10].
However, in the context of large-scale multi-user applica-
tions this becomes difficult to manage.

4 Work in Progress
We are validating our results on other architectures,

e.g. experiments on an AMD Quad-Core show similar be-
havior. As we were primarily investigating large datasets,
64× larger than the cache, we did not consider locality of
reference and individual request latency. With increasing
cache sizes, more applications will be able to fit their work-
ing set (partially) in the cache. Thus, we will conduct a
similar analysis for cache memory.
We are evaluating options for incorporating our findings

into a scheduler. One possibility is to make reservations in
terms of CPU time adjusted for the expected memory per-
formance. According to our results, accessing even small
amounts of 8-bit randomly placed data, e.g 1 MB can re-
quire up to 30 ms, which is significant if sub-second accu-
racy is required.

References
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.

DBMSs on a modern processor: Where does time go?
In Proc. of 25th Int. Conf. on Very Large Data Bases
(VLDB’99), pp. 266–277, 1999.

[2] J. Backus. Can programming be liberated from the von Neu-
mann style? A functional style and its algebra of programs.
Comm. of the ACM, 21(8), pp. 613–641, 1978.

[3] J. Baulier, P. Bohannon, S. Gogate, C. Gupta, and S. Haldar.
Datablitz storage manager: main-memory database perfor-
mance for critical applications. In Proc. of the ACM SIG-
MOD Int. Conf. on Management of Data (SIGMOD’99), pp.
519–520, 1999.

[4] J. Calandrino and J. Anderson. Cache-aware real-time
scheduling on multicore platforms: Heuristics and a case

study. In Proc. of the Euromicro Conf. on Real-Time Sys-
tems (ECRTS’08), pp. 299–308, 2008.

[5] N. Fisher, J. Anderson, and S.Baruah. Task partitioning upon
memory-constrained multiprocessors. In Proc. of the 11th
IEEE Int. Conf. on Embedded and Real-Time Computing
Systems and Applications (RTCSA’05), pp. 416–421, 2005.

[6] A. Marchand, P. Balbastre, I. Ripoll, M. Masmano, and
A. Crespo. Memory resource management for real-time sys-
tems. In Proc. of the 19th Euromicro Conf. on Real-Time
Systems (ECRTS’07), pp. 201–210, 2007.

[7] S. A. McKee. Reflections on the memory wall. In Proc. of
the 1st Conf. on Computing Frontiers (CF’04), p. 162, 2004.

[8] T. Okumura and D. Mossé. Virtualizing network I/O on end-
host operating system: Operating system support for net-
work control and resource protection. IEEE Transactions
on Computers, 53(10), pp. 1303–1316, 2004.

[9] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M.
Wong, and C. Maltzahn. Efficient guaranteed disk request
scheduling with Fahrrad. In Eurosys’08, April 2008.

[10] H. Ramaprasad and F. Mueller. Bounding worst-case data
cache behavior by analytically deriving cache reference pat-
terns. In Proc. of the 11th IEEE Real Time on Embed-
ded Technology and Applications Symposium (RTAS’05), pp.
148–157, 2005.

[11] J. Rao and K. A. Ross. Making B+trees cache conscious in
main memory. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’00), pp. 475–486, 2000.

[12] R. Sites. It’s the memory, stupid! Microprocessor Report,
10(10), pp. 2–3, 1996.

[13] T. T. Team. High-performance and scalability through ap-
plication tier,in-memory data management. In Proc. of 26th
Int. Conf. on Very Large Data Bases (VLDB’00), pp. 677–
680, 2000.

[14] W. A. Wulf and S. A. McKee. Hitting the memory wall: im-
plications of the obvious. SIGARCH Comput. Archit. News,
23(1), pp. 20–24, 1995.

[15] J. Zhou and K. A. Ross. Implementing database operations
using SIMD instructions. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD’02), pp. 145–156,
2002.

