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Abstract
Recent approaches exploiting the massively parallel ar-
chitecture of graphics processors (GPUs) to acceler-
ate database operations have achieved intriguing results.
While parallel sorting received significant attention, par-
allel search has not been explored. Withp-arysearch we
present a novel parallel search algorithm for large-scale
database index operations that scales with the number of
processors and outperforms traditional thread-level par-
allel GPU and CPU implementations. With parallel ar-
chitectures becoming omnipresent, and with searching
being a fundamental functionality for many applications,
we expect it to be applicable beyond the database do-
main. While GPUs do not appear to be ready to be
adopted for general-purpose database applications yet,
given their rapid development, we expect this to change
in the near future. The trend towards massively paral-
lel architectures, combining CPU and GPU processing,
encourages development of parallel techniques on both
architectures.

1 Introduction
Specialized hardware has never made significant inroads
into the database market. Recently, however, developers
have realized the inevitably parallel future of comput-
ing, and are considering alternative architectures. Cur-
rent GPUs offer a much higher degree of parallelism
than CPUs, and databases, with their abundance of set-
oriented processing, offer many opportunities to ex-
ploit data parallelism. Driven by the large market for
games and multimedia, graphics processors (GPUs) have
evolved more rapidly than CPUs, and now outperform
them not only in terms of processing power, but also in
terms of memory performance, which is more often than
computational performance the bottleneck in database
applications [1].

Today’s enterprise online-transaction processing
(OLTP) systems rarely need to access data not in
memory [2]. The growth rates of main memory size
have outstripped the growth rates of structured data

Workload Small Medium Large
[#Queries] 16 1k 16k

binary CPU 1.0 1.0 1.0
binary CPU SSE 1.3 1.4 1.4
binary CPU TLP 0.6 1.1 2.1
binary GPU TLP 0.3 5.1 5.1
p-ary GPU SIMD 0.5 5.4 6.7

Table 1: Measured speedup of parallel index search implemen-
tations with respect to a serial CPU implementation

in the enterprise, particularly when ignoring historical
data. In such cases, database performance is governed
by main memory latency [3], aggravated by the ever
widening gap between main memory and CPU speeds.
In the 1990’s the termmemory wallwas coined [4],
which remains an accurate description of the situation
today [5].

The paradigm shift from bandwidth to throughput ori-
ented, parallel computing [6] comes with new opportuni-
ties to circumvent the memory wall. Interleaving mem-
ory requests from many cores and threads theoretically
allows for much higher memory throughput than opti-
mizing an individual core could provide. Leveraging the
massive parallelism of GPUs with up to 128 cores [7] we
put this approach to the test.

Optimizing enterprise-class (parallel) database sys-
tems for throughput usually means exploiting thread-
level parallelism (TLP), pairing each query with a sin-
gle thread to avoid the cost associated with thread syn-
chronization. The GPU’s threading model exposed to
the programmer suggests the same mapping, although
modern GPUs architectures actually consist of multiple
SIMD processors, each comprising multiple processing
elements (Fig. 1). While for certain workloads this ap-
proach already outperforms similarly priced CPUs, we
demonstrate that algorithms exploiting the nature of the
GPU’s SIMD architecture can go much further (Tab. 1).

We developed a parallel search algorithm, namedp-
ary search, with the goal to improve response time for
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Figure 1: Architecture of an Nvidia GeForce 8 series GPU.

massively parallel architectures like the GPU, which
were originally designed to improve throughout, rather
than individual response time. The "p" in the name
refers to the number of processors that can be synchro-
nized within a few compute cycles, which determines
convergence rate of this algorithm. As it turns out, im-
plemented on the GPU, p-ary search outperforms con-
ventional approaches not only in terms of response time
but also throughput, despite significantly more memory
accesses and theoretically lower throughput. However,
small workloads yield poor performance, due to the over-
head incurred to invoke GPU computation. As the GPU
operates in batch mode, the often critical time-to-first-
result is the time-to-completion, such that larger work-
loads/batches incur higher latency.

Despite promising performance results, the GPU is not
ready yet to be adopted as a query co-processor for mul-
tiple reasons. First, the GPU’s batch processing mode.
Second, the lack of global synchronization primitives,
small caches and the absence of dynamic memory allo-
cation make it difficult to develop efficient parallel al-
gorithms for more complex operations such as joins [8].
Third, the development environment is still in its infan-
cies offering limited debugging and profiling capabili-
ties.

However, GPU computing is progressing so rapidly
that between the time this research was conducted and
its publication some of these issues are already addressed
in the latest hardware and software generation. For ex-
ample, global synchronization and asynchronous com-
munication have been added to the hardware feature
list. While emerging parallel programming APIs like
OpenCL [9] already blur the frontiers between CPU and
GPU computing, future architectures like Larrabee [10]
integrate both.

2 GPGPU
At the beginning of the computer graphics era, the CPU
was in charge of all graphics operations. Progressively,
more and more complex operations were offloaded to
the GPU. When, thanks to their massively parallel ar-
chitecture, GPUs started becoming more powerful than
the CPU itrself, many programmers began exploring the
use of GPU for non-graphics computations, a practice re-
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Figure 2: Comparison of scheduling techniques.Event-based
schedulingon the GPU maximizes processor utilization by sus-
pending threads as soon as they issue a memory request, with-
out waiting for a timetime quantumto expire, as on the CPU.

ferred to asGeneral-Purpose Graphics Processing Unit,
or GPGPU. However, programming the GPU had to be
done by using standard graphics APIs, such as OpenGL
or DirectX. Even when using it for general-purpose com-
putations, the developer had to map data and variables
to graphics objects, using single-precision floating-point
values, the only data type available on the GPU. Algo-
rithms had to be expressed in terms of geometry and
color transformations, and to actually perform a compu-
tation required pretending to draw a scene. This task was
usually rather challenging even for simple applications,
due to the rigid limitations in terms of functionality, data
types, and memory access.

Nvidia’s Compute Unified Device Architecture
(CUDA), an extension to the C programming language
that allows programming the GPU directly, was a major
leap ahead [11]. At the top level, a CUDA application
consists of two parts: a serial program running on the
CPU and a parallel part, called akernel, running on the
GPU.

The kernel is organized as a number ofblocks of
threads, with one block running all its own threads to
completion on one of the severalstreaming multiproces-
sors, SMs, available. When the number of blocks as de-
fined by the programmer exceeds the number of physical
multiprocessors, blocks are queued automatically. Each
SM has eight processing elements, PEs (Fig. 1). PEs in
the same streaming multiprocessor execute the same in-
struction at the same time inSingle Instruction-Multiple
Data, SIMD, mode [12].

To optimize SM utilization, within a block the GPU
groups threads following the same code path into so
calledwarps for SIMD-parallel execution. Due to this
this mechanism, nVidia calls its GPU architectureSin-
gle Instruction-Multiple Threads(SIMT). Threads run-
ning on the same SM share a set of registers as well
as a low-latencyshared memorylocated on the proces-
sor chip. This shared memory is small (16 KB on our
G80) but about 100× faster than the largerglobal mem-



Figure 3: Four PEs independently performing a binary search
for different keys on the same data range in five steps.

ory on the GPU board. A careful memory access strategy
is even more important on the GPU than it is on the CPU
because caching on the GPU is minimal and mainly the
programmer’s responsibility.

To compensate for the small local memories and
caches GPUs employ massive multithreading to effec-
tively hide memory latency. The scheduler within an SM
decides for each cycle which group of threads (warp)
to run, such that warps with threads accessing memory
can be suspended at no cost until the requested data is
available. The seamless multithreading is made pos-
sible by thousands of register in each SM, such that
each thread keeps its variables in registers and context
switching is free. Effectively this approach implements
what we would naively describe as event-based schedul-
ing (Fig. 2) and benefits large, latency-bound workloads.

On the other hand, CPUs employ larger caches (4 MB
on our Q6700) but rely on a single set of registers, such
that context switches require preserving the state of exe-
cution of the current thread before loading the next. As
context switching is expensive and schedulers are imple-
mented in software, CPU scheduling is based on time
quanta such that in case of a cache miss a thread sits idle
until the memory request returns or its time quantum ex-
pires.

These characteristics make the GPU an interesting
platform for parallel database processing.

3 GPU Parallel Search
Video cards have been explored as coprocessors for a va-
riety of non-graphics related applications [13] including
database operations [14]. Sorting on the GPU [15, 16]
including very large data sets that require multi-pass sort-
ing [17], used variants of Batcher’s bitonic sorting net-
works [18]. While geospatial databases, whose data
sets are similar to graphics data were the first to adopt

Figure 4: Four PEs jointly performing a search based on do-
main decomposition in 2 steps. At each step all PEs are reas-
signed within a sub-range.

GPU’s for more complex operations like join [19], this
has only been considered recently for general-purpose
databases [8]. GPGPU research prior to 2007, before
the release of nVidia’s CUDA [11], required the use of
graphics specific APIs that only supported floating-point
numbers. However, fast searching — which is funda-
mental even beyond database applications — has not
been explored for general purpose data on the GPU yet.

The obvious way of implementing search on the GPU
is to exploit data parallelism, omnipresent in large-scale
database applications, handling thousands of queries si-
multaneously. Multiple threads run the same serial algo-
rithm on different problem instances, which is no differ-
ent than CPU multi-threading where each select opera-
tion is paired with a single thread. While this approach
does not improve response time for a single problem in-
stance, it returns multiple results at the same time while
requiring only minimal synchronization. To reduce re-
sponse time for a single problem instance, we suggest to
explore functional parallelism following the divide-and-
conquer principle, assigning different sub-problems to
different PEs. The efficiency of this approach is only lim-
ited by the amount of communication and the synchro-
nization overhead imposed by the architecture. Since
synchronization within a SM is relatively fast, this ap-
pears to be a promising avenue.

Parallel Binary Search. For a data-parallel search im-
plementation we selected multithreaded serial binary
search, which has been used in the past for graphics pro-
cessing [20]. The worst-case run time of binary search
on n elements islog2n, but a multithreaded parallel im-
plementation usingp PEs can performp searches simul-
taneously. Although some searches might finish earlier,
in SIMD systems the other PEs must wait to start the next
search until all are finished. A workload with a number
of searches smaller than the number of PEs renders the
remaining PEs idle and results in inefficient resource uti-
lization

Figure 3 shows a parallel binary search of four keys,
one per PE, in the same search space — the characters
from ’4’ to ’ z’. In our example PE0, PE2, and PE3 found
their data quickly and have to idle until PE1 finishes. The
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Figure 5: Theoretical comparison of p-ary and parallel binary search forp = 8, the number of PE’s in a SM.

larger the number of PEs in a SM the more likely it is that
p searches require worst-case execution time.

P-ary Search. A domain decomposition strategy ap-
plied to search has all PEs within an SM searching for
the same key value, each in a disjoint subset of the initial
search range (Fig. 4). At each step all PEs compare their
key with the two boundary values of their subset. Af-
terwards, all PEs are reassigned to new disjoint subsets
within the subset identified as containing the search key
value. In case more than one PE reports finding the key
value, it is irrelevant which one delivers the result since
all are correct.

This approach reduces the search range by 1/p at each
iteration, yielding a worst-case execution time oflogpn.
The response time of this algorithm is significantly lower
than the previous one, but it delivers only one result for
each run instead ofp. However, it has higher efficiency
since PEs never idle and the synchronization overhead is
minimal on SIMD architectures. Neighboring PEs can
share a boundary key, to reduce the number of global
memory accesses from 2p to p+ 1 for each iteration.
This can be further reduced top−1 by re-using the re-
sult’s boundary keys from the previous iteration or set-
ting the lower bound to−∞ and the upper one to+∞.

Theoretical Considerations. A brief theoretical eval-
uation of p-ary search regarding throughput, rate of con-
vergence, and the number of memory accesses exhibits
the tradeoffs necessary to achieve better convergence and
thus response time (Fig. 5a). Figure 5b shows that p-
ary search achieves significantly lower throughput than
binary search, requiringlogp(n) time for one result vs
log2(n) time for p results. Although p-ary search re-
quires the same number of memory accesses per itera-
tion, p, it yields only 1 result as opposed top. The faster
rate of convergence cannot compensate for the more than
2× larger (Fig. 5c) amount of memory accesses.

However, in practice p-ary search outperforms mul-
tithreaded binary search by 30% on the same architec-
ture (Sec. 4). The reasons why p-ary search is still able
to achieve better throughput are manyfold.

First, memory requests by multiple PEs can be served
in parallel due the GPUs wide memory buses (384-bit
for our G80), as long as they do not conflict. With-
out caching, on the GPU conflicting memory requests
are serialized. P-ary search produces converging mem-
ory strides, with a stride length determined by the subset
searched divided by the number of PEs. Memory con-
flicts can only occur in the last iteration if the remaining
subset contains less entries than processors.

Second, multithreaded binary search will produce
many memory conflicts as all PEs start with the same
pivot element, before they diverge. The first iteration is
guaranteed to produce number of PEs,p, conflicts result-
ing in p serialized memory accesses. While the probabil-
ity decreases from iteration to iteration, binary search is
guaranteed to produce a minimum ofp log2p memory
conflicts, while p-ary searchp−1 at most.

Third, p-ary search has a smaller footprint in terms of
register and local memory usage. This allows to run more
instances (threads) of p-ary search on a streaming multi-
processor than of binary search. Therefore, performance
gains over binary search only become apparent for larger
workloads (Fig. 6).

4 Experimental Evaluation
We analyze the performance of our parallel search al-
gorithm applied to database index queries, with respect
to throughput, scalability, and response time. All experi-
ments were conducted on an x86 system with a 2.66 GHz
Intel Core2-Quad Q6700 CPU, DDR2-1066 5-5-5-15
RAM, and two 1.35 GHz nVidia GeForce 8800GTX
GPUs with 768 MB DDR3 RAM each, running Oracle
Enterprise Linux 5, kernel 2.6.18, CUDA 1.0 and nVidia
display drivers 100.14.11.

The data set was designed to resemble database struc-
tures, with a maximum size limited by the video card
memory, which also has to accommodate queries, re-
sults and the search application. The data consists of
randomly-generated 15-character null-terminated ASCII
strings organized as in a database table. For the evalua-
tion of our index search implementations we use a sorted
column with 36 million unique entries, approximately
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Figure 6: Absolute performance of index search implementa-
tions exploiting thread level and SIMD parallelism on the CPU
and the GPU with respect to workload.

550 MB in size, resembling an index column of a large
database table.

The following experiments resemble a busy OLTP
database server with a varying number of requests in
its input queues. For the GPU implementation we per-
manently store the data set in video memory and for
the CPU implementation in main memory, as in-memory
databases would. Transferring our 550 MB data set from
main memory to GPU memory takes 400 ms, but is
only required at startup. An efficient GPU accelerated
database would require either the memory being shared
between CPU and GPU, or updates taking place directly
in the GPU memory, such that transfer time is irrelevant.

Throughput. Figure 6 shows the throughput achieved
by different search implementations dependent on work-
load conditions. Starting with a serial CPU implemen-
tation of binary search as the baseline, there are sig-
nificant performance gains from exploiting the CPU’s
SSE vector unit for all workloads, while multithreading
only yields performance gains for larger workloads. The
same applies to GPU implementations which in general
require larger batches in order to achieve good perfor-
mance. However, handling large amounts of queries si-
multaneously is nothing unusual for large-scale database
servers. Similar to the CPU, the GPU benefits from ex-
ploring SIMD parallelism for all workloads, such that in-
dex operations using p-ary search yield up to 30% better
performance.

As the low performance of GPU search implemen-
tations on small workloads in the previous experiment
already indicates, offloading work to the GPU involves
significant startup overhead. Thus we measure the time
that each step in the offloading process requires, i.e. API
launch time, processing time and copying queries to and
results from the GPU (Fig. 7). For a detailed analysis
of execution time of database functions on the CPU we
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would like to refer to the work by Ailamaki et al. [3].

Timing Breakdown. We measure the execution time
for each step by running exactly the same batch of
queries multiple times, each time adding another step of
the offloading process. We obtain the time required for
a step by computing the difference to the previous run.
For example, the API launch time is determined by exe-
cuting an empty program. The time for transferring the
batch of queries to the GPU is determined by subtracting
the time required to launch an empty program from the
time required for launching the program and copying the
queries to the video card, and so on.

As expected, Figure 7 shows that for small workloads
the total time is dominated by the cost for offloading the
processing to the GPU, e.g. for a workload of 32 queries
approximately 70% of the time is spent launching the
API and copying data back and forth. As the workload
size increases this overhead decreases and execution time
becomes the dominant factor. This also marks when of-
floading to the GPU becomes efficient.

Response Time. Efficiency is not always the only fac-
tor that needs to be considered when offloading work
to the video card. For many applications like web ser-
vices for example, time-to-first result or response time
needs to be considered when deciding wether to offload
queries to the video card. Given the GPU’s batch pro-
gramming model the time-to-first-result or response time
equals time-to-completion. In Figure 8 we measured the
sustained index search throughput given a maximum re-
sponse time, which would in turn determine the batch
size. In order to compare these results to CPU implemen-
tations we did not allow the CPU to return results early.
For response times of 2 ms and above, the throughput of
two GPUs reaches its peak performance of 7.5 million
index searches per second. Even with the GPU operating
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in batch mode it can be used efficiently as a co-processor
in a system with response time requirements of 0.2 ms
and above.

5 Conclusions and Future Work
We strongly believe that exploring parallelism beyond
traditional multi-threading and even beyond the thread-
ing model on the GPU’s SIMT architecture (Sec. 2)
has great potential. As we have demonstrated with p-
ary search there can be significant performance gains
developing truly parallel algorithms. Theoretically, p-
ary search converges much faster than binary search,
but on the other hand has significantly lower through-
put and requires more memory accesses. In practice, we
found that p-ary search outperforms binary search on the
GPU in terms of throughput, despite nearly three times
as many memory accesses. For database systems, be-
sides throughput, response time and time-to-first-result
are crucial, and p-ary search on the GPU improves all
three.

As p-ary search and our research analyzing memory
performance [21] demonstrate, parallel memory accesses
are a way to scale not only memory latency but also
throughput. With rapidly increasing main memory sizes,
it is expected that soon even traditionally I/O bound
database applications like Business Intelligence associ-
ated with Data Warehousing can leverage in-memory an-
alytics [22]. With more and more applications becoming
memory bound, overcoming the memory wall [4, 5] is
imperative.

We will continue our research on parallel algo-
rithms, leveraging parallelism to improve performance of
memory-bound applications, using in-memory databases
as an example. To validate this concept, we are port-
ing p-ary search to other parallel architectures, includ-
ing Intel Nehalem, Sun Niagara, and IBM Cell. While
implementing p-ary search to multi-core architectures is
straightforward, it is also possible to map p-ary search to
vector architectures, for example x86 SSE which is going

to double in width in the next generation [23]. The rapid
improvements of GPU programmability and Efforts like
Intel Larrabee [10] indicate a fusion of GPU and CPU
architectures such that algorithms will be applicable to
future architectures. We focus on algorithms designed
to scale with core count, such that even in the current era
of throughput-oriented computing [6], response time will
improve as well.
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